Metallurgy: Understanding How, Learning Why

Studies in Honor of James D. Muhly
Metallurgy: Understanding How, Learning why

Studies in Honor of James D. Muhly

edited by
Philip P. Betancourt and Susan C. Ferrence

p. cm. -- (Prehistory monographs ; v. 29)

Includes bibliographical references.

GN799.M4M48 2011

939.37--dc23

2011017917
Table of Contents

List of Tables in the Text.. ix
List of Figures in the Text.. xi
Life with Jim Muhly by Polymnia Muhly... xix
Bibliography of James D. Muhly.. xxiii
List of Abbreviations... xxxi
Introduction by Susan C. Ferrence.. xxxiii

PART I. METALLURGY OF CYPRUS
1. Cypriot Chalcolithic Metalwork by Edgar Peltenburg... 3
2. Miniature Ingots from Cyprus by Alessandra Giumlia-Mair, Vasiliki Kassianidou, and George Papasavvas.. 11
3. Broken Symbols: Aspects of Metallurgy at Alassa by Sophocles Hadjisavvas........................... 21
4. A Metallurgical Feast? by Vassos Karageorghis.. 29
5. Blowing the Wind of Change: The Introduction of Bellows in Late Bronze Age Cyprus
 by Vasiliki Kassianidou .. 41

6. A Newly Rediscovered Cypriot Tripod-Stand in the Florence Archaeological Museum
 by Fulvia Lo Schiavo .. 49

7. From Smiting to Smithing: The Transformation of a Cypriot God by George Papasavvas 59

PART II. METALLURGY OF CRETE

 by Mihalis Catapotis, Yannis Bassiakos, and Yiannis Papadatos 69

9. Silver and Bronze Artifacts from the EM I Necropolis at Gournes, Pediada
 by Calliope E. Galanaki, Yannis Bassiakos, and Vassilis Perdikatsis 79

10. The Dog Diadem from Mochlos by Jane Hickman .. 91

11. The Triangular “Daggers” of Prepalatial Crete by Keith Branigan 105

12. A Marine Style Gold Ring from the Hagios Charalambos Ossuary:
 Symbolic Use of Cockle Shells in Minoan Crete by Philip P. Betancourt 117

13. Metalworking at Malia, Quartier MU: High or Low Technology?
 by Jean-Claude Poursat and Cécile Oberweiler ... 125

14. The Mochlos Sistrum and Its Origins by Jeffrey S. Soles
 with a contribution by Alessandra Gioumilia-Mair ... 133

PART III. METALLURGICAL TECHNOLOGY

15. Akrotiriaki and Skali: New Evidence for EBA Lead/Silver and Copper Production
 from Southern Siphnos by Zozi D. Papadopoulou ... 149

16. Early Bronze Age Copper Smelting on Seriphos (Cyclades, Greece)
 by Olga Philaniotou, Yannis Bassiakos, and Myrto Georgakopoulou 157

17. Searching for the Early Bronze Age Aegean Metallurgist’s Toolkit by Christos G. Doumas 165

18. Technological Aspects of Bronze Age Metallurgical Ceramics in the Eastern Mediterranean
 by Anno Hein and Vassilis Kilikoglou ... 181

19. Slags from the Late Bronze Age Metal Workshops at Kition and Enkomi, Cyprus
 by Andreas Hauptmann ... 189

20. The Metallurgy of Iron during the Early Years of the Iron Age by Robert Maddin 203

PART IV. TRADE AND INTERACTIONS IN THE HISTORY OF METALLURGY

21. Copper Oxhide Ingots and Lead Isotope Provenancing by Noël H. Gale 213

22. “Biscuits with Ears:” A Search for the Origin of the Earliest Oxhide Ingots
 by Zofia Anna Stos-Gale ... 221
LIST OF FIGURES IN THE TEXT

23. Metal Exchange in Italy from the Middle to the Final Bronze Age (14th–11th century B.C.E.)
 by Reinhard Jung, Mathias Mehofer, and Ernst Pernicka. 231

24. Cyprus, Copper, and Alashiya by A. Bernard Knapp. .. 249

25. Alashiya: A Scientific Quest for Its Location by Robert S. Merrillees
 with contributions by Allan Gilbert and Costas Xenophontos. 255

26. Hittite Metals at the Frontier: A Three-Spiked Battle Ax from Alalakh by K. Aslıhan Yener. 267

27. Sources of Tin and the Tin Trade in Southwest Asia: Recent Research and Its Relevance
 to Current Understanding by Vincent C. Pigott. .. 275

28. Three Copper Oxhide Ingots in the Şanlıurfa Archaeology Museum, Turkey by Cemal Pulak. 295
List of Tables in the Text

Table 1.1. List of copper and metal-related material from Chalcolithic Cyprus. 4

Table 2.1. Chemical composition of miniature ingots from Cyprus analyzed by X-ray fluorescence in weight %. ... 16

Table 6.1. The results of metallographical analyses (in %) that were made on tripod-stands and four-wheeled-stands were collected and discussed by Papasavvas (2001, 43–45; 2003, 27). 55

Table 8.1. Chemical composition from area scans of ore and slag samples from Kephala Petras using scanning electron microscopy–energy dispersive spectroscopy (SEM-EDS). 71

Table 8.2. Chemical composition of metallic inclusions in slag samples from Kephala Petras determined by SEM-EDS. ... 73

Table 8.3. Comparison of technical aspects of the smelting processes at Kephala Petras and Chrysokamino (Catapotis and Bassiakos 2007). 75

Table 9.1. XRF surface analysis of metallic finds from the excavation at Gournes. The analyses are given by elements. ... 85
Table 9.2. SEM/EDX analyses ("window") on the corroded silver inlay (HM X-A 1707α) and on a broken blue stone bead. .. 86

Table 9.3. Laboratory XRF analyses of the irregular ferrous sample (HM X 5800). 86

Table 11.1. Analyses of 19 triangular daggers from Junghans (1969) showing results for tin, lead, arsenic, and nickel. Catalog numbers and types refer to Branigan 1974. 108

Table 11.2. Seven triangular daggers with socket corrosion marks in their haft areas. 112

Table 14.1. Average values of major elements that resulted from analysis on different parts of the Mochlos sistrum as determined by portable XRF. 143

Table 19.1. Chemical composition of slag samples from Kition and from Enkomi. 193

Table 19.2 Lead isotope ratios of two slag samples from Kition (CY-1/1) and Enkomi (CY-2/2a). 199

Table 22.1. Lead isotope compositions of LM I oxhide ingots not published in Stos-Gale et al. 1997, or in other papers, consistent with their origin from Cypriot ores. 223

Table 22.2. Lead isotope compositions of oxhide ingots from three sites in Crete: Hagia Triada, Kato Zakros, and Tylissos. They are not consistent with their origin from Cypriot ores. 224

Table 23.1. Summary of the investigated objects. ... 233

Table 24.1. Copper from Alashiya mentioned in the Amarna Letters. 251

Table 24.2. The talent in various Bronze Age measuring systems. 251

Table 28.1. Lead-isotope data for the three Urfa oxhide ingots listed together with data from four chalcopyrite and two pyrite samples from the Apliki mine in northwestern Cyprus. ... 299
List of Figures in the Text

Frontispiece. James D. Muhly, Pacheia Ammos, Crete, Greece, June 2007. .. ii

Figure 1.1. Middle Chalcolithic metal objects from Cyprus. ... 5
Figure 1.2. Late Chalcolithic metal objects from Cyprus. ... 7

Figure 2.1. Plan of the central part of Enkomi showing the findspots of the miniature ingots under study. ... 12
Figure 2.2. Six miniature ingots from Enkomi (inv. nos. Enk. 53.2, Enk. 53.3, Enk. 774, Enk. 885, Enk. 1995, 1936-VI-19/1) and one from Mathiatis (1936/VII-17/91). 14

Figure 3.1. Geological map of the Troodos region showing copper-producing sites. 23
Figure 3.2. Pot bellows from Alassa–Pano Mandilaris. ... 24
Figure 3.3. Miniature ingot from Alassa–Pano Mandilaris, almost one-half extant. 24
Figure 3.4. Northern wall of the storeroom of Building II at Palaiotaverna showing the traces left by severe fire on the ashlar blocks. ... 26
Figure 4.1. Mycenaean IIIB (nos. 1, 2) and imitation Mycenaean (no. 3) drinking cups from Athienou–Pamboularin tis Koukkouninas. .. 30
Figure 4.2. Mycenaean IIIB (nos. 2–4) and imitation Mycenaean (no. 1) vases from Athienou–Pamboularin tis Koukkouninas. .. 31
Figure 4.3. Late Minoan IIIB stirrup jars from Athienou–Pamboularin tis Koukkouninas. .. 33
Figure 4.4. An ivory rhyton from Athienou–Pamboularin tis Koukkouninas .. 34
Figure 4.5. White Shaved ware juglets in situ. .. 36
Figure 4.6. Medium size and miniature Plain White ware juglets in situ. .. 37
Figure 4.7. White Shaved ware juglets. .. 38
Figure 4.8. The skull of a small animal, a kid. .. 39
Figure 4.9. Burned animal bones. .. 39
Figure 5.1. Ceramic pot bellows in the Pancyprian Gymnasium collection (inv. no. Π.Γ.096). 43
Figure 5.2. Drawing of ceramic pot bellows in the Pancyprian Gymnasium collection (inv. no. Π.Γ.096). 43
Figure 5.3. The nozzle of the pot bellows (inv. no. Π.Γ.096). .. 43
Figure 5.4. View of the internal surface of the bellows (inv. no. Π.Γ.096). .. 43
Figure 5.5. Tuyère from Politiko-Phorades. .. 44
Figure 5.6. Droplets of slag adhering to the inner surface of the air-hole in a tuyère from Politiko-Phorades. .. 44
Figure 5.7. Sherds from ceramic pot bellows(?) from Politiko-Phorades. .. 44
Figure 5.8. Rim sherd (S.F. 432) of a ceramic pot bellows(?) from Politiko-Phorades. .. 45
Figure 5.9. Double-walled tuyère in the Pancyprian Gymnasium collection (inv. no. Π.Γ.096). 45
Figure 5.10. Double-walled tuyère from Politiko-Phorades. .. 45
Figure 6.1. The tripod-stand (inv. no. 82053) and the cup (inv. no. 82504) in the Florence Archaeological Museum. .. 50
Figure 6.2. Four views of the tripod-stand (inv. nos. 82503) in the Florence Archaeological Museum. 52
Figure 6.3. Detail of the ring and a spacer on the tripod-stand. .. 53
Figure 6.4. Detail of the ring and a loop on the tripod-stand. .. 53
Figure 6.5. Detail of an inner strut and a loop with a pendant on the tripod-stand. .. 53
Figure 6.6. Detail of a leg and the two adjacent inner struts on the tripod stand. .. 53
Figure 6.7. The cup (inv. no. 82504) in the Florence Archaeological Museum. .. 54
Figure 6.8. The tripod-stand with the cup placed on top. .. 54
Figure 7.1. The Ingot God from Enkomi, front view. H. 35 cm. .. 60
LIST OF FIGURES IN THE TEXT

Figure 7.2. The Ingot God from Enkomi, side view. .. 60
Figure 7.3. Drawings of the Ingot God, front and side views (by Clara Vasitsek). 60
Figure 7.4. Detail of the lower part of the Ingot God, seen from the front. 62
Figure 7.5. Detail of the lower part of the Ingot God seen from the side. 62
Figure 7.6. Detail of the Ingot God showing the ingot base, seen from the side. 62
Figure 7.7. Detail of the Ingot God showing the ingot base, seen from below. 62
Figure 7.8. Detail of the Ingot God showing the ingot base, seen from above. 62

Figure 8.1. Copper-ore sample KP 03/1156 (optical microscope; cross-polarized light [XPL]). 71
Figure 8.2. Reduced chemical composition of slag samples from Kephala Petras plotted on the Fe/SiO₂–CaO (+7% Al₂O₃) phase diagram. 71
Figure 8.3. Slag sample KP 03/230 containing piece of unreacted copper-ore (dark inclusions at the center) surrounded by magnetite skeletons (optical microscope with plain-polarized light [PPL]). 73
Figure 8.4. Slag sample KP 03/1119 that features the co-presence of delafossite laths (center), magnetite skeletons (left), and wustite dendrites (right) (optical microscope with PPL). 73

Figure 9.1. Aerial photograph of the EM I cemetery at Gournes, Pediada, and the MM building (Section 2). ... 80
Figure 9.2. Silver necklace from the EM I cemetery at Gournes, Pediada (Tomb 2, HM X-A 1707α). Photo by Y. Papadakis-Ploumidis. 81
Figure 9.3. Cylindrical blue stone bead from the silver necklace of the EM I cemetery at Gournes, Pediada (Tomb 2, HM X-A 1707β). Photo by Y. Papadakis-Ploumidis. 81
Figure 9.4. Silver necklace from the EC I cemetery at Louros on Naxos (Papathanassopoulos 1961–1962, 135, pl. 67c:NM 6205 [1], 8826; Tomb 26). 81
Figure 9.5. Silver necklace from the possible burial site at Alepotrypa, Diros Mani, Laconia (Papathanassopoulos 1998, 65, no. 65:NMD 918a–c). 82
Figure 9.6. Silver beads from the EM I cemetery at Gournes, Pediada (HM X-A 1707β, HM X-A 1708, HM X-A 1709; Tombs 2, 27, 33). Photo by Y. Papadakis-Ploumidis. 82
Figure 9.7. Bronze borers from the EM I cemetery at Gournes, Pediada (HM X 5798, HM X 5899, HM X 5802; Tombs 2, 21). .. 83
Figure 9.8. Bronze crescent-shaped earring from the EM I cemetery at Gournes, Pediada (HM X 5803; Tomb 21). .. 83
Figure 9.9. Bronze shank from the EM I cemetery at Gournes, Pediada (HM X 5801; Section 2).... 83
Figure 9.10. Irregular corroded ferrous mass from the EM I cemetery at Gournes, Pediada (HM X 5800; Tomb 9). ... 83
Figure 9.11. Characteristic microstructure of the badly corroded silver inlay coming from the silver necklace (HM X-A 1707α). 85
Figure 9.12. The XRD spectrum of a stone bead from the silver necklace. 87
Figure 10.1. Dog Diadem (HM 269), as recovered in two pieces from Mochlos Tomb II. 92
Figure 10.2. Dog Diadem (HM 269; after Seager 1912, fig. 9:II.4). .. 92
Figure 10.3. Detail near center of Dog Diadem (HM 269). ... 92
Figure 10.4. Detail near center of Dog Diadem (HM 269). ... 92
Figure 10.5. Clay pouring vessel (after Seager 1912, fig. 34). .. 94
Figure 10.6. Stone cover (after Seager 1912, fig. 5). ... 95
Figure 10.7. Silver diadem from Kastri, Syros (after Tsountas 1899, pl. 10.1). A later reconstruction of the full diadem by Papathanassopoulos (1981, 132–133, fig. 61) includes fragments illustrating the erect ears of the dogs. 96
Figure 10.8. Diadem from Mochlos Tomb IV/V/VI, restored by Costis Davaras. 97
Figure 10.9. Dog Diadem (HM 269). ... 97
Figure 10.10. Dog Diadem (HM 269), with vertical extensions (HM 285, HM 296–HM 298, HM 310 a–c) recovered from Tomb II. ... 98
Figure 10.11. Attachment mechanism on antenna-like extension from Mochlos Tomb XIX (HM 295). 98

Figure 11.1. The gold-hafted dagger from Moni Odigitria in the Mitsotakis Collection (after Xenaki-Sakellariou 1986, drawing by Mme. Dringopoulou-Faklari). 110
Figure 11.2. Six triangular daggers showing pairs of corrosion marks in the base of the haft and one with a heart-shaped mark (cat. nos. refer to Branigan 1974). 111

Figure 12.1. Gold ring (HNM 11,868) from the Hagios Charalambos Cave decorated with three cockle shells and irregular rocks. Drawing is 2:1 scale. 118
Figure 12.2. Clay jug (HM 19,814) with three-dimensional marine style decoration on the exterior from Quartier Mu at Malia, MM IIB (courtesy of J.-C. Poursat). Restored ht. ca. 15 cm. ... 119
Figure 12.3. Scoop (HM 21,008) from Quartier Mu at Malia with cockle shells and irregular rocks added at the rim, MM IIB (courtesy of J.-C. Poursat). H. 4.5 cm. 119
Figure 12.4. Scoops from Pseira with cockle shells and irregular rocks added at the rims, MM IIB. 119

Figure 13.1. Plan of Quartier Mu, showing the places where smithing tools were found. Plan by M. Schmid and N. Sigalas. ... 126
Figure 13.2. Clay crucible (M 91/3107–09a) from Quartier Mu, Malia. 127
Figure 13.3. Photo and reconstruction drawing of clay crucible (M 89/2202–04) from Quartier Mu, Malia. ... 127
Figure 13.4. Tuyère (HNM 13413 [69 M 1392]) from Quartier Mu, Malia. 128
Figure 13.5. Stone mold (B 81/C 15) from Quartier Mu, Malia. ... 129
Figure 13.6. Mold fragments from Quartier Mu, Malia (B 81/C 17, upper row; B 81/C 16, lower row). 129
Figure 13.7. Reconstructed casting installation in Area VI 4. ... 130
List of Figures in the Text

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>The Mochlos sistrum in situ (HNM 14,398, length 28.5 cm) in Room 2.2 of House C.3. 134</td>
</tr>
<tr>
<td>14.2</td>
<td>The sistrum (HNM 14,398). 135</td>
</tr>
<tr>
<td>14.3</td>
<td>Drawing of the sistrum (D. Faulmann). 136</td>
</tr>
<tr>
<td>14.4</td>
<td>Half ingot with linear sign (HNM 14,389). 137</td>
</tr>
<tr>
<td>15.1</td>
<td>Map of Siphnos. 150</td>
</tr>
<tr>
<td>15.2</td>
<td>Sherds from Akrotiraki dating to the EC period. 151</td>
</tr>
<tr>
<td>15.3</td>
<td>Litharges from Akrotiraki. 151</td>
</tr>
<tr>
<td>15.4</td>
<td>The semi-circular hearth from Akrotiraki. 151</td>
</tr>
<tr>
<td>15.5</td>
<td>Lead objects from Akrotiraki. 152</td>
</tr>
<tr>
<td>15.6</td>
<td>Northeastern side of Trench I at Skali. 153</td>
</tr>
<tr>
<td>15.7</td>
<td>Some copper slags, furnace fragments, and stone tools (one for crushing slag) from Skali. 154</td>
</tr>
<tr>
<td>16.1</td>
<td>Simplified geological map of Seriphos showing the sites mentioned in the text (modified from Salemink 1980, fig. 2). 158</td>
</tr>
<tr>
<td>16.2</td>
<td>The slag heap of Kephala (two arrows point at Kephala 1 and Kephala 2 deposits). 159</td>
</tr>
<tr>
<td>16.3</td>
<td>Furnaces carved into bedrock at Kephala. 160</td>
</tr>
<tr>
<td>16.4</td>
<td>Perforated furnace fragments from Kephala. Arrows indicate edges of perforations. 160</td>
</tr>
<tr>
<td>16.5</td>
<td>The slag heap of Avessalos. 160</td>
</tr>
<tr>
<td>16.6</td>
<td>Rock-carved pits at the top of the Avessalos slag heap. 161</td>
</tr>
<tr>
<td>16.7</td>
<td>Cluster of small rock-carved pits and grooves on a schist outcrop at the top of the Avessalos slag heap. 161</td>
</tr>
<tr>
<td>16.8</td>
<td>Pottery sherds from Avessalos. 162</td>
</tr>
<tr>
<td>16.9</td>
<td>Remains of EBA walls at Plakalona. 163</td>
</tr>
<tr>
<td>17.1</td>
<td>Drawing and two views of a metal “chopper” (NM 8987) from Hagios Kosmas in Attica. 166</td>
</tr>
<tr>
<td>17.2</td>
<td>Two views of a heavy stone hammer (AKR 485) from Akrotiri, Thera, weighing ca. 14 kg and 0.303 m in length. 167</td>
</tr>
<tr>
<td>17.3</td>
<td>Portable hearth (AKR 10,157) from the Early Cycladic horizon at Akrotiri, Thera. 168</td>
</tr>
<tr>
<td>17.4</td>
<td>Crucible from the islet of Giali near Nisyros, Dodecanese, with slag remains. Height 3.8 cm, rim diameter 8 cm (photo and information courtesy of T. Marketou). 168</td>
</tr>
<tr>
<td>17.5</td>
<td>Fragment of a crucible (NM 5238) from Kastri on Syros. 169</td>
</tr>
<tr>
<td>17.6</td>
<td>Drawing and three views of a crucible support (NM 8977) from Hagios Kosmas in Attica. 169</td>
</tr>
<tr>
<td>17.7</td>
<td>Drawing and two views of a nozzle holder (NM 8875) from Askitario in Attica. 170</td>
</tr>
<tr>
<td>17.8</td>
<td>Nozzle holder (AKR 10,734) from Akrotiri, Thera. 171</td>
</tr>
<tr>
<td>17.9</td>
<td>Three views of a nozzle holder (AKR 10,155) from Akrotiri, Thera. 171</td>
</tr>
</tbody>
</table>
Figure 17.10. Crucible resting on clay supports over a portable hearth and nozzle holders.
Sketch by Manolis Zacharioudakis. ... 171
Figure 17.11. Drawing of a mask-like furnace (NM 6113.1) from Dokathismata, Amorgos. 173
Figure 17.12. Mask-like furnace (NM 6113.1) from Dokathismata, Amorgos. 173
Figure 17.13. Mask-like furnace placed on the rim of a crucible as a furnace.
Sketch by Manolis Zacharioudakis. ... 173
Figure 17.14. Clay nozzles. A: Daskalio Kavos, Keros, MN 2278. B: Askitario in Attica, NM 5242. ... 173
Figure 17.15. Two views of a clay nozzle (NM 5242) from Askitario in Attica. 174
Figure 17.16. Reconstruction of the metal melting/alloying device. Sketch by Manolis Zacharioudakis. . 174
Figure 17.17. Drawing of an open mold (NM 5236) from Kastri, Syros. 174
Figure 17.18. Fragments of an open mold (NM 5236) from Kastri, Syros. 175
Figure 17.19. Two views and drawing of a closed mold (NM 7202) for casting a shaft-hole axe in the lost-wax technique from Poliochni, Lemnos. 175
Figure 17.20. Three views and drawing of a copper shaft-hole axe (NM 7205) from Poliochni, Lemnos. 175
Figure 17.21. Drawing and two views of a stone hammer-axe (“battle axe”; NM 7231)
from Poliochni, Lemnos. ... 176
Figure 17.22. Unfinished stone hammer-axe (“battle axe”; NM 4476) from Poliochni, Lemnos. 177
Figure 17.23. Three views of an unfinished stone hammer-axe (“battle axe”; NM 4476)
from Poliochni, Lemnos. ... 177
Figure 17.24. Funnel-shaped perforated clay utensil (inv. no. 2831) from the Heraion, Samos
(photograph courtesy of the German Archaeological Institute at Athens). 177
Figure 17.25. Reconstruction drawing of a funnel-shaped perforated clay utensil (inv. no. 2831)
from the Heraion, Samos. Possibly a “Bunsen burner.” ... 177
Figure 18.1. Effect of thermal conductivity: temperature development on the outer surface of a 30-mm furnace wall with varying thermal conductivity; heat of 1,200°C is simulated on the inner surface. ... 185
Figure 18.2. Effect of thermal conductivity: corresponding heat loss through thermal convection on the outer surface. ... 186
Figure 18.3. Effect of the thickness of a furnace wall... 186
Figure 19.1. Sample CY-1/1, Kition, showing a negative impression on the bottom and gas bubbles on top. ... 191
Figure 19.2. Sample CY-1/2, Kition. Note charcoal inclusions. Tap slag with flow structures, dense silicate slag, and thick efflorescence of Fe-sulfates. 192
Figure 19.3. Sample CY-1/3, Kition. Semi-globular chunk, irregular surface. Section shows.
brecciated texture with inclusions of Fe-sulfates, hostrock, and charcoal in an iron-rich silicate slag. ... 192
Figure 19.4. Sample CY-1/6, Kition. Irregular chunks, rough surface, attached to tuyères. 192
Figure 19.5. Sample CY-2/2c, Kition. Fragment of slag showing secondary fillings mainly of iron-sulfate in gas bubbles, which successively created radial cracks. .. 192

Figure 19.6. Sample CY-1/1d, Kition. Section from the surface of slag no. CY-1/1. Fayalite as the main constituent crystallizes in long and thin needles in a characteristic so-called spinifex texture. .. 195

Figure 19.7. The same slag as shown in Figure 19.6 shows fayalite in a different shape and habitus: due to a lower cooling rate, the phase forms thicker crystals in the form of hopper olivines. ... 195

Figure 19.8. Sample CY-2/2a, Enkomi. Fayalitic slag high in magnetite (medium gray crystals). 196

Figure 19.9. Sample CY-1/1a, Kition. The image shows partially dissolved magnetite agglomerations in a fayalitic matrix at the bottom of the bowl slag. .. 196

Figure 19.10. Sample CY-1/6, Kition. The slag is built up almost completely by thick dendrites of magnetite. The crystals are rimmed by fine needles of delafossite among a glassy silicate matrix (dark gray). Copper prills (light) show inclusions of cuprite. 196

Figure 19.11. Sample CY-1/3, Kition. Breccia-like slag with angular inclusions of fayalitic liquid embedded in a limonitic matrix (black). ... 196

Figure 19.12. Sample CY-1/1b, Kition. The bottom of the slag chunk is infiltrated by secondary cuprite (medium gray), subordinated malachite, and limonite. 197

Figure 19.13. Sample CY-1/1b, Kition. Large droplet of matte from the bottom of the slag with a composition near chalcocite (~ Cu₂S). ... 197

Figure 19.14. Binary phase diagram of FeS-Cu₂S (after Chang, Lee, and Neumann 1976). 199

Figure 20.1. Iron reduced in the solid state as observed in the scanning electron microscope (SEM). ... 205

Figure 20.2. Layered structure in ax/adze from Sardis. .. 205

Figure 20.3. Pick (A) from Mt. Adir and its martensitic structure (B). 207

Figure 20.4. Knife (A) from Kinneret and its microstructure (B). 207

Figure 20.5. Chisel (A) from Al Mina showing martensite structure (B) along with cracks at tip. Ashmolean Museum. ... 208

Figure 20.6. Adze (A) from Al Mina showing a layer of carburization (B). Ashmolean Museum. 209

Figure 21.1. Plot of lead isotope analyses for ores from Cyprus and Lavrion (Attica). 216

Figure 21.2. Plot of lead isotope analyses of 30 copper oxhide ingots found on Cyprus in relation to lead isotope analyses of ores from Cypriot ore deposits. 217

Figure 22.1. Oxhide ingot from Mycenae and ingots from Kyme in the Numismatic Museum, Athens. . 222

Figure 22.2. LI compositions of the LM I copper oxhide ingots of non-Cypriot origin compared with Cypriot and Near Eastern copper ores. .. 227

Figure 23.1. Sites of the analyzed objects (black squares); sites of objects with published analytical results, which are discussed in comparison (black circles). 232
Figure 23.2. Logarithmic plots of element concentrations. ... 236
Figure 23.3. Lead isotope ratios of the objects studied. ... 237
Figure 23.4. Lead isotope ratios of the objects studied compared with copper and lead ores from Tuscany, Sardinia, and Cyprus. ... 237
Figure 23.5. Lead isotope ratios of the objects studied compared with Bronze Age (mostly FBA) artifacts from Sardinia (Begemann et al. 2001). ... 238
Figure 23.6. Comparison of silver and nickel in objects from this study with Sardinian artifacts (Begemann et al. 2001). ... 239
Figure 23.7. Comparison of the minor element composition of the objects from this study with literature data of artifacts from the continental Italian regions of Trentino, Marche, Latium, and Calabria. ... 240
Figure 23.8. Lead isotope ratios (normalized to 204Pb of copper ores from the Mitterberg area in Salzburg, Austria) of LBA copper ingots from the Salzach valley near Mitterberg (Pernicka, unpublished) and artifacts and ingots from Italy (this study). ... 240
Figure 23.9. Lead isotope ratios of the northern Italian pick-ingots (red squares) and plano-convex ingots (blue dots) compared with copper and lead ores from Sardinia (open squares) and copper ores from Cyprus (outlined by the ellipses). ... 243

Figure 26.1. Photo and drawing of the copper-based shaft-hole ax with three spikes (AT1889). 267
Figure 26.2. Bronze blade with antithetical lions, Alalakh (Woolley 1955, pl. 70:AT/39/305). 270

Figure 27.1. Cargo excavated from the 14th century B.C. shipwreck at Uluburn, Turkey (after Yalçin 2005, fig. 2). ... 275
Figure 27.2. Map showing the southern or “coastal” (A) and the northern or “overland” (B) routes used to bring tin to the west from sources to the east of Mesopotamia (map by William R. Fitts, MASCA, Penn Museum). ... 278
Figure 27.3. Map of western and central Asia showing the sites mentioned in the text. 279
Figure 27.4. Prehistoric tin mines in western and central Asia (after J. Cierny, T. Stöllner, and G. Weisgerber 2005, fig. 1). Courtesy of the Deutsches Bergbau-Museum, Bochum. ... 280
Figure 27.5. Tin belts in Eurasia and Australia (after de Jesus 1978). .. 283

Figure 28.1. Three ingots, showing both faces of each, found at Göksu River in the Şanlıurfa Archaeology Museum. ... 294
Figure 28.2. The general area where the ingots were discovered in 1991 during dredging of the Göksu riverbed. ... 295
Figure 28.3. Lead-isotope ratio plots of oxhide ingots from the Uluburun and Cape Gelidonya shipwrecks, Urfa ingots, copper-smelting slags from Kalavassos–Ayios Dhimitrios (ADK) and Enkomi, and Cypriot copper ores, including those of the Solea axis, which includes the Apliki mine. Graph courtesy of Zophia Stos-Gale. ... 298
Figure 28.4. Map of sites mentioned in the text. X indicates location of the Urfa ingots. 301
Life with Jim Muhly

Polymnia Muhly

James David Muhly was born in Minneapolis, Minn. on May 6, 1936, the middle child and only son of Gordon David and Violet Lucille Muhly. His mother was of Swedish descent, while his father had German roots and maintained a keen interest in the German connections of the Muhlys throughout his life.

Jim and his sisters, Carolyn and Mary, grew up in South Minneapolis, within walking distance of Minnehaha Falls, in a house that their maternal grandfather, a carpenter, had built. He attended the local public schools, graduating from Roosevelt High School in 1954. By all accounts, especially his own, he was a misfit, who had no interest in school activities beyond playing the trombone in the band. This does not mean that Jim is remembered as a quiet, lonesome child. Indeed the opposite seems to be the case. At the tender age of nine he had the distinction of being expelled from the Minnehaha Methodist church where his parents were lifelong members, and with his special group of like-minded friends had many hair-raising adventures, which, according to his mother, contributed heavily to the dazzlingly white hue of her hair. Tamer activities, such as swimming, skating, ice hockey, canoeing, and hunting trips were also part of growing up in South Minneapolis, but for the Muhlys so was working in the Post Office where Gordon Muhly was employed all his working life. Jim worked there part-time during the school year and full time in the summers for many years, adding in the process some unusual idiomatic expressions to his vocabulary and acquiring the means to satisfy his lifelong passion for books and Classical music.

Jim enrolled at the University of Minnesota in 1954 as a Chemistry major, but he was soon enticed down the path to History, without ever losing his initial interest in science. He graduated in 1958. I met him in 1959 when we were both graduate students. Having graduated in Archaeology and History from the University of Athens, I had just become William MacDonald’s third successive Greek assistant in a
study of Messenian place names, an adventure that,
as I thought at the time, was going to last for a year.
Jim was in Ancient History and I was in Classical
Studies, but this was a distinction of no great signif-
ificance since both programs had few students, all of
whom attended pretty much the same courses.

Being a part of this small group made the huge
and, for a foreigner, rather scary campus seem a
familiar environment. Attending seminars, sharing
“flour” pies at the Coffman Union and drinking
weak beer at campus hang-outs fostered close
friendships that in many cases have endured all
our lives. Everyone followed different career paths
and ended up in different places, but even now,
during our infrequent get-togethers recollections
of Minnesota days sooner or later end up with sto-
ries about Tom B. Jones, who was the professor of
Ancient History and the teacher who made the
most vivid and lasting impression on us all. A legen-
dary figure on the campus, he was endlessly
discussed as much for his academic achievements
in fields as diverse as Latin American History,
Numismatics, or Assyriology as for his personali-
ty. Tom Jones, who was equally prone to terrorize
his students as to support their aspirations,
remained Jim’s mentor to his death in 1999 and
had a greater influence on Jim’s interests and atti-
dude toward research and academic achievement
than any of his many other distinguished teachers.

Jim and I were married in Minneapolis in
May 1961 and, after spending the summer in New
York City on a fellowship from the American
Numismatic Society, arrived in New Haven, CT,
where he was to begin his studies in the Depart-
mant of Near Eastern Languages and Literature at Yale.
Courses were taught by scholars such as Albrecht
Goetze, William Kelly Simpson, Franz Rosenthal,
Maurice Pope, and Ferris Stevens, and the handful
of students comprised an orthodox Israeli, a Dutch
diplomat, a “mad” Hungarian, a Japanese Protestant
minister, and Jim. Goetze was an inspiring teacher,
who also taught his students how to do research. Jim
still quotes the admonition: “never base an argu-
ment on unpublished research.”

The years in New Haven were exhilarating, char-
eracterized at once by hard work and a feeling of free-
don generated by a never again to be experienced
minimalist life style. It was during this time that
Jim made his first trip to Greece in the summer of
1962 and our daughter, Elizabeth, was born.
return to Minnesota where Jim got his first teaching
job marked also the return to the family fold, giving
our little girl the opportunity to become closer to
her paternal grandparents and the rest of her
American relatives than our other children were ever
able to do.

It was between the two years at Minnesota that
Jim spent his first full year in Greece, in 1965–1966,
as a Fulbright student at the American School of
Classical Studies at Athens, getting to know the
country beyond Athens and Attica at a time when
much that is now gone forever could still be seen
and savored. The year in Greece also marked the
watershed in Jim’s career, since it was at the School
that he met Mike Jameson, who was to offer him a
position at the newly established Ancient History
program at the University of Pennsylvania, working
together with the Roman historian Robert Palmer.

We arrived in Philadelphia in August 1967 and
settled in a large, old row house in West Philly that
became our home for the next 30 years. To say that
Penn in the late 1960’s and 1970’s was the perfect
place for someone like Jim would be a serious
understatement. The Oriental Studies Department
where his formal appointment was located over-
flowed with great scholars in just about every field
connected with the Near and Far East, as was also
the case with History, Classical Archaeology, and
Anthropology, while the University Museum served
as a magnet that attracted a multitude of scholars
from all over the world. It took constant work to
keep up with students such as Jerry Rutter, Tamara
Stech, Peter Kuniholm, or Harry Weiss, finish a
dissertation (1969), and produce publications that
would promote his career. For many years his fami-
ly, to which two boys, Nicholas and Alexis, were
added in 1968 and 1970, saw him only at dinner.

West Philly, however, was not a place where one
felt isolated or lonely. Our neighborhood, on the
westernmost edge of Penn territory, was a place
where everybody, whether they were Penn people,
old time residents, or new professionals, felt com-
fortable. Our next-door neighbors, Larry and Carme
Dixon, were close friends long before Carme went
to work for Penn, becoming for many years the soul
of the Ancient History as well as the Classical
Archaeology programs. It was a neighborhood well
provided with children. The sound of their playing
in the alley, summer and winter, is the part of life in
West Philly that we have missed the most. Our own
striving to meet deadlines of one sort or another. The events that stand out seem widely scattered—minor disasters (who could ever forget that Friday night at HUP Emergency after Alexis bit our dog and the dog bit him back), celebrations of new publications and awards, graduations and our daughter’s wedding, and above all the Sabbaticals that gave us extra time to spend on research as well as on family time.

This phase of our lives came to an end in the early 1990’s. Unlike the changes that took place in the early 1970’s that seemed to have been effected overnight and were linked to specific events, the 90’s evolved so gradually that transformation was hardly noticed. Jim became a full professor, our children grew into independent adults and more or less left home and we grew older. Penn also changed: many colleagues left or retired and new ones arrived; Oriental Studies became Asian and Middle Eastern Studies (AMES) and Classical Archaeology became part of the Graduate Group in Art and Archaeology of the Mediterranean World (AAMW). Despite the fact that in 1994 Jim was invited by Phil Betancourt to co-direct the excavation of the early metallurgical site of Chrysokamino in East Crete, an exciting project that has led to a long-term collaboration in the exploration and publication of other sites in this area, somehow life in Philadelphia came to seem rather flat and a radical change became a desirable option.

In 1997 Jim took early retirement and accepted the position of director at the American School of Classical Studies in Athens and we have stayed on in Greece ever since. The five years of his tenure at the School were enjoyable and as active as anyone could wish for, if somewhat lean in scholarly terms, as Jim’s time was largely consumed by administration. There was still time for meeting friends passing through and making many new ones, for travel and for attending conferences and many, many lectures.

We are now officially retired and working harder than ever, since retirement has forced us to confront and try to fulfill all the long-standing obligations that had been put off because of lack of time. For Jim collaboration and contact with colleagues in the U.S., Cyprus, and Italy continues by means of e-mail, while the libraries of the American and other foreign schools and his own books meet most if not all research needs. Continuing work with Phil and Mary Betancourt in Crete has become a major part...
of Jim’s life as a scholar and one of the few activities now capable of taking him away from his book-lined, paper-strewn office and his computer. Another factor that has become important in Jim’s scholarly activity is his contact with young American and Greek students and colleagues, whose research is concerned with the many subjects that continue to be of vital interest to him. It is to them that Jim is fond of saying that the guiding principle he learned from the great teachers and scholars with whom he has worked is the belief that in order to be a good teacher it is necessary to be a good scholar, for the simple reason that one has to impart to students information and ideas that are not in textbooks.

Life in our neighborhood is pleasant most of the time. Jim loves the ready access to the seashore and enjoys being a familiar figure who is served automatically with his preferred newspapers and magazines or with his favorite bread. Nevertheless, even within the neighborhood and certainly when one ventures beyond it, one has to confront other, less pleasant aspects of life in Greece, which is never boring but all too often frustrating and not infrequently infuriating. We are currently debating whether we are, once again, due for a change, but have not yet made a firm decision.
Bibliography of James D. Muhly

Degrees

1958 B.A., University of Minnesota.
1969 Ph.D., Yale University.

Publications

———. 1973. Copper and Tin: The Distribution of Mineral Resources and the Nature of the Metals Trade in the Bronze Age (Transactions of the Connecticut Academy of Arts and Sciences 43), Hamden, CT.

———. 1976. Copper and Tin: The Distribution of Mineral Resources and the Nature of the Metals Trade in the Bronze Age, 2nd ed. (Transactions of the Connecticut Academy of Arts and Sciences 46), Hamden, CT.

Muhly, J.D. 1986. “Prehistoric Background Leading to the First Use of Metals in Asia,” Bulletin of the Metals Museum (Sendai, Japan) 11, pp. 21–42.

Muhly, J.D., R. Laffineur, and W. B. Hafford, eds., Res Maritimae: Cyprus and the Eastern Mediterranean from Prehistory to Late Antiquity, in IEJ 52, pp. 118–120.

Kling, B., and J.D. Muhly, eds. 2007. Joan du Plat Taylor’s Excavations at the Late Bronze Age Mining Settlement at Apliki Karmallos, Cyprus, Part I (SIMA 134:1), Sävedalen.

List of Abbreviations

Abbreviations for periodicals in the bibliographies of the individual articles follow the conventions of the *American Journal of Archaeology* 111.1 (2007), pp. 14–34.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKR</td>
<td>excavation number, Akrotiri, Thera</td>
<td>LChal</td>
<td>Late Chalcolithic</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
<td>LH</td>
<td>Late Helladic</td>
</tr>
<tr>
<td>dia.</td>
<td>diameter</td>
<td>LM</td>
<td>Late Minoan</td>
</tr>
<tr>
<td>EBA</td>
<td>Early Bronze Age</td>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>EC</td>
<td>Early Cycladic</td>
<td>MBA</td>
<td>Middle Bronze Age</td>
</tr>
<tr>
<td>EChal</td>
<td>Early Chalcolithic</td>
<td>MC</td>
<td>Middle Cycladic</td>
</tr>
<tr>
<td>ED-XRF</td>
<td>emission dispersive X-ray fluorescence</td>
<td>MChal</td>
<td>Middle Chalcolithic</td>
</tr>
<tr>
<td>EH</td>
<td>Early Helladic</td>
<td>MH</td>
<td>Middle Helladic</td>
</tr>
<tr>
<td>EM</td>
<td>Early Minoan</td>
<td>MM</td>
<td>Middle Minoan</td>
</tr>
<tr>
<td>gr</td>
<td>gram</td>
<td>NCSR</td>
<td>National Center for Scientific Research “Demokritos”</td>
</tr>
<tr>
<td>h.</td>
<td>height</td>
<td>NM</td>
<td>National Archaeological Museum of Greece</td>
</tr>
<tr>
<td>HM</td>
<td>Herakleion Archaeological Museum</td>
<td>NMD</td>
<td>Neolithic Museum, Diros, Mani</td>
</tr>
<tr>
<td>HNM</td>
<td>Hagios Nikolaos Archaeological Museum</td>
<td>pers. comm.</td>
<td>personal communication</td>
</tr>
<tr>
<td>L.</td>
<td>length</td>
<td>pers. obs.</td>
<td>personal observation</td>
</tr>
<tr>
<td>LBA</td>
<td>Late Bronze Age</td>
<td>pres.</td>
<td>preserved</td>
</tr>
<tr>
<td>LC</td>
<td>Late Cycladic or Late Cypriot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEM/EDX</td>
<td>scanning electron microscopy and energy dispersive microanalyses</td>
<td>wt.</td>
<td>weight</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>-----</td>
<td>----------------------</td>
</tr>
<tr>
<td>SM Siteia</td>
<td>Siteia Archaeological Museum</td>
<td>th.</td>
<td>thickness</td>
</tr>
<tr>
<td>th.</td>
<td>thickness</td>
<td></td>
<td>XRD X-ray diffractometry</td>
</tr>
<tr>
<td>w.</td>
<td>width</td>
<td></td>
<td>XRF X-ray fluorescence spectrometry</td>
</tr>
</tbody>
</table>
Introduction

Susan C. Ferrence

James D. Muhly is professor emeritus of Ancient Near Eastern History at the University of Pennsylvania in Philadelphia and director emeritus of the American School of Classical Studies at Athens in Greece. He has been a pioneering leader in the rarified field of ancient metallurgy for over 45 years. His distinguished scholarship covers a wide geographic area from Italy to Mesopotamia and especially includes Cyprus and the Aegean. His knowledge of ancient literature and history, command of modern scholarship, and understanding of ever-evolving scientific analyses combine to form the basis of a long-standing and interdisciplinary academic career.

One of the highlights of his research was the publication of Copper and Tin: The Distribution of Mineral Resources and the Nature of the Metals Trade in the Bronze Age in 1973 (and subsequent second edition in 1976), which has been hailed as a benchmark by which other such works are measured. To quote Vince Pigott in this volume (p. 273): “. . . it proved to be . . . significant as an example par excellence for the successful integration of archaeological, metallurgical, ancient historical, and textual data.”

In 1994 the Archaeological Institute of America gave the Pomerance Award for Scientific Contributions to Archaeology to Robert Maddin, James Muhly, and Tamara Stech. Their archaeological and scientific collaboration spanned almost 30 years and produced over 30 publications. Furthermore, Jim’s body of research stands at 187 bibliographic entries and counting, an admirable number to say the least.

This volume of 28 chapters written by 38 authors of 8 different nationalities about ancient metallurgy spanning from Italy to western Asia exemplifies Jim’s career of multi-national scholarly collaboration. Its title obviously reflects his—and all archaeologists’—innate curiosity about the ancient world, especially regarding the technological advances of prehistoric societies. Metallurgy: Understanding How, Learning Why is offered to
a scholar, mentor, friend, and colleague who has influenced the lives, scientific research, and academic scholarship of the contributors represented in this festschrift.

Part I includes seven chapters on the metallurgy of Cyprus. Edgar Peltenburg presents 18 metal objects plus eight pieces of related evidence in his examination of the early history of metalwork on Cyprus. Alessandra Giunlia-Mair, Vasiliki Kassianidou, and George Papasavvas use X-ray fluorescence (XRF) to analyze seven miniature ingots from Cyprus, a program of scientific inquiry that yielded surprising results. Sophocles Hadjisavvas explores aspects of metallurgy at Alassa in Cyprus and how it relates to cult at the end of the Late Bronze Age. Vassos Karageorghis revisits the site of Athienou-Pamboularin tis Koukkouninas and suggests a new interpretation for a special deposit of interesting pottery and other unique finds. Vasiliki Kassianidou investigates the origins of pot bellows in Cyprus especially in relation to the site of Politiko-Phorades. Fulvia Lo Schiavo digs into the archives of the Florence Archaeological Museum to uncover the provenance of a miniature Cypriot tripod-stand. George Papasavvas discusses the manufacture and iconography of a metal figurine from Enkomi, which has been called the Ingot God, and explores a transformation in its meaning at the site.

Part II is comprised of seven chapters on the metallurgy of Crete. Mihalis Catapotis, Yannis Bassiakos, and Yiannis Papadatos present new scientific data resulting from a program of analysis that was undertaken to understand the role of copper production in eastern Crete at the juncture of the Final Neolithic and Early Minoan I periods. Calliope Galanaki, Yannis Bassiakos, and Vassilis Perdikatis use three different types of elemental analyses to identify several metal objects from an Early Minoan I cemetery with Cycladic influence at Gournes. Jane Hickman discusses several aspects of the gold Dog Diadem from Mochlos—such as context, manufacture, date, and iconography—in her reconstruction of its original form, meaning, and life history. Keith Branigan adds four new specimens to his corpus of triangular daggers from prehistoric Crete, for a total of 98 pieces, and updates his theories on the topic. Philip Betancourt examines the iconography, meaning, and date of a gold ring from the burial cave of Hagios Charalambos, with implications for regional politics in eastern Crete during the Middle Bronze Age. Jean-Claude Poursat and Cécile Oberweiler apply fabric analyses and scanning electron microscopy (SEM) to clay crucibles, molds, bellows, and tuyères in their assessment of the proficient metalworking technology in use at Middle Minoan Malia. Jeffrey Soles describes a large metal sistrum that was excavated at Mochlos and details parallels from other sites in Crete in order to elucidate its context and meaning.

Part III contains six chapters on metallurgical technology. Zozi Papadopoulou characterizes the high level of specialized metalworking in southern Siphnos during the Early Bronze Age (EBA). Olga Philaniotou, Yannis Bassiakos, and Myrto Georgakopoulou investigate four known slag heaps on Seriphos in the Cyclades to shed light on copper smelting during the Early Bronze Age. Christos Doumas richly illustrates different types of tools—some of which are enigmatic—that come from several EBA Aegean sites and proposes that their function should be based in metallurgy. Anno Hein and Vassilis Kilikoglou discuss heat transfer in ceramics in relation to their examination of furnace fragments from Seriphos and Cyprus. Through the application of four types of scientific analyses, Andreas Hauptmann attempts to define “furnace conglomerate,” which is a type of slag that was identified at Kition and Enkomi in Cyprus. Robert Maddin elucidates the reasoning behind the replacement of bronze with iron during the early Iron Age.

Part IV encompasses eight chapters about trade and interconnections in the history of metallurgy. Noël Gale uses lead isotope analysis to identify the Apliki mine region of Cyprus as the main source of ore for the production of most copper oxhide ingots. Zofia Stos-Gale analyzes lead isotope data in search of the origin of the earliest oxhide ingots, which are dated to Late Minoan IB and come from five sites on Crete. Reinhard Jung, Mathias Mehofer, and Ernst Pernicka attempt to provenance the raw material that was used to manufacture over 30 bronze objects that come from different parts of Italy and date to the Middle and Final Bronze Age. Bernard Knapp integrates cuneiform texts with archaeological and archaeometallurgical data to identify Alashia as Cyprus and place it within the larger eastern Mediterranean sphere of economic and political relations. Robert Merrillees critically reviews a recent volume and disagrees with its assertions regarding the identification of Cyprus with Alashiya. Aslıhan Yener
presents a battle ax from Alalakh in southern Turkey and suggests that its stylistic components are consistent with other objects that have been described as sacred weapons. Vincent Pigott reviews recent scholarship regarding the Bronze Age tin trade in southwestern Asia, particularly concerning the possible sources of tin. Cemal Pulak tells the story of the chance discovery of three oxhide ingots in southeastern Turkey and further postulates on their ancient riverine trade route.