Transport Stirrup Jars of the Bronze Age Aegean and East Mediterranean
Frontispiece. Inscribed transport stirrup jar (KOU01) from Kourion © The Trustees of the British Museum, London.
Transport Stirrup Jars of the Bronze Age Aegean and East Mediterranean

by

Halford W. Haskell, Richard E. Jones, Peter M. Day, and John T. Killen

Published by INSTAP Academic Press
Philadelphia, Pennsylvania
2011
Transport stirrup jars of the Bronze Age Aegean and east Mediterranean / by Halford W. Haskell ... [et al.].

p. cm. -- (Prehistory monographs ; 33)
Includes bibliographical references and index.

GN799.P6.T7 2011
666.68--dc23

2011033494
To Hector Catling,

to whom we are delighted to dedicate this volume,

we offer our greatest thanks

for his long-standing guidance and encouragement.
Table of Contents

List of Illustrations in the Text .. xi
List of Tables .. xiii
List of Graphs .. xv
List of Figures .. xix
List of Plates ... xx
Acknowledgments ... xxv
List of Abbreviations ... xxvii

Chapter 1. Introduction, Halford W. Haskell, Richard E. Jones, and Peter M. Day ... 1
 1.1. Transport Stirrup Jars in Late Bronze III .. 1
 1.2. Definition .. 3
 1.3. Construction .. 3
 1.4. Decoration and Firing ... 3
 1.5. Hardness .. 4
 1.6. Distribution ... 4
 1.7. SJ Contents ... 5
 1.8. History of Scholarship .. 6
 1.9. Current Study .. 6
Chapter 2. Typology, *Halford W. Haskell*. ... 9
 2.1. Introduction... 9
 2.2. Development of SJ Design.. 9
 2.3. Typological Groups... 10

 3.1. History of Stirrup Jar Analysis and Methodology... 23
 3.2. Aims of the New Analytical Work... 27

 4.1. Sampling Strategy and Procedures... 29
 4.2. Analytical Procedures.. 30
 4.3. Performance Characteristics of AAS and Comparability with OES....................... 30
 4.4. Reference Data.. 32
 4.5. Data Treatment and Classification... 36
 4.6. Results.. 38

Chapter 5. Petrographic Analyses, *Peter M. Day*. .. 41
 5.1. Introduction... 41
 5.2. Petrographic Fabric Groupings... 42
 5.3. Summary of Petrographic Analyses.. 76

Chapter 6. Interpretation of the Chemical and Petrographic Data, *Richard E. Jones and Peter M. Day*. 79
 6.1. Introduction... 79
 6.2. Chemical Data... 79
 6.3. Petrographic Data... 83

 7.1. Introduction... 87
 7.2. Overall Pattern... 88

Chapter 8. The Linear B Inscriptions, *John T. Killen*. ... 91
 8.1. The Material... 91
 8.2. Chemical Analysis Groupings versus Inscription Groupings................................. 97
 8.3. Differences among Chemical Analysis Classes... 100
 8.4. Implications of the Results for Cretan Geography.. 102
 8.5. Addendum: Inscriptions on Fine Ware Vessels.. 105

 9.1. Introduction... 109
 9.2. Sites and Chronology... 109
 9.3. Summary of Dating.. 118
 9.4. Power... 118
 9.5. General Conclusions... 123
<table>
<thead>
<tr>
<th>Illustration 1.1</th>
<th>KN32 (left) and TH05 (right).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illustration 1.2</td>
<td>Cap (MYC28) on spout of MYC27 (left). Sealed cap and plug (right), House of the Oil Merchant, Mycenae.</td>
</tr>
<tr>
<td>Illustration 1.3</td>
<td>Overlapping sections of base (interior shown at bottom) and body (exterior shown at top) of MYC13.</td>
</tr>
<tr>
<td>Illustration 1.4</td>
<td>Black square dots indicate distribution of transport stirrup jars in the central and eastern Mediterranean.</td>
</tr>
<tr>
<td>Illustration 1.5</td>
<td>Distribution of ISJs in the Aegean as indicated by site abbreviations.</td>
</tr>
<tr>
<td>Illustration 2.1</td>
<td>PIG02 with small ring handle on shoulder at left.</td>
</tr>
<tr>
<td>Illustration 2.2</td>
<td>PIG01 with horn on spout.</td>
</tr>
<tr>
<td>Illustration 2.3</td>
<td>Typegroup Ia (MYC46).</td>
</tr>
<tr>
<td>Illustration 2.4</td>
<td>Typegroup Ib (MYC78).</td>
</tr>
<tr>
<td>Illustration 2.5</td>
<td>Typegroup IIa MYC89 (left) and MYC15 (right).</td>
</tr>
<tr>
<td>Illustration 2.6</td>
<td>Typegroup IIb MYC72 (left) and MYC16 (right).</td>
</tr>
<tr>
<td>Illustration 2.7</td>
<td>Typegroup IIc MYC74 (left) and MYC31 (right).</td>
</tr>
<tr>
<td>Illustration 2.8</td>
<td>Typegroup III (TH07).</td>
</tr>
</tbody>
</table>
Illustration 2.9. Typegroup IVa (Myc83). .. 13
Illustration 2.10. Typegroup IVb (Myc50). .. 13
Illustration 2.11. Typegroup VIII (Th18). ... 14
Illustration 2.12. Typegroup IX (Th08). ... 14
Illustration 2.13. Typegroup X (Myc52). ... 14
Illustration 2.14. Typegroup Xla (Myc24). .. 14
Illustration 2.15. Typegroup Xlb (Myc20). ... 15
Illustration 2.16. Detail photo of Myc20 showing a deep depression in the disc. .. 15
Illustration 2.17. Typegroup XIII (Th25). ... 16
Illustration 2.18. Typegroup XIV (Th31). ... 16
Illustration 2.19. Typegroup XV (Th37). ... 17
Illustration 2.20. Typegroup XVI (Th53). ... 17
Illustration 2.21. Typegroup XVII (Th55). .. 17
Illustration 2.22. Typegroup XVIII (Th03). .. 17
Illustration 2.23. Typegroup XIX (Th33). ... 18
Illustration 2.24. Typegroup XX (Kn05). ... 18
Illustration 2.25. Typegroup XXI (Kn32). .. 18
Illustration 2.26. Typegroup XXIa (Zyg04). ... 18
Illustration 2.27. Typegroup XXIb (Zyg10, left) and (Zyg09, right). 19
Illustration 2.28. Examples from the broader Groups A (top row), B (second and third row), D (fourth row), and E (fifth row). ... 20
Illustration 2.29. Detail of x incised into surface of disc of Kn05. 21
Illustration 2.30. Detail of the pierced handle of Th04. 21
Illustration 8.1. ISJs listed by site and chemical group. 92
List of Tables

Table 1. Catalog numbers of analyzed samples according to region and findspot.

Table 2. Characteristics of the broad typological Groups A, B, D, and E.

Table 3. SJs listed by typegroups, including pieces not analyzed but attributed on typological grounds.

Table 4. SJs listed by broad group.

Table 5. Composition characteristics of the Lefkandi brick standard as determined by the British Ceramic Research Association (BCRA), the Fitch Laboratory, and laboratories in Venice and Berlin.

Table 6. Comparability of OES and AAS. OES1 (Catling and Jones 1977), drilled sample. OES2 (Catling and Millett 1965 but composition corrected according to factors in Jones 1986, table 2.5), same drilled sample as OES1. OES3 (WCISJ), new drilled sample. AAS (present study), fragment.

Table 7a. Chemical compositions of the SJs, stoppers, and miscellaneous samples determined by AAS and expressed as percentage of element oxide.

Table 7b. Chemical compositions of the SJs determined by OES, published in WCISJ and expressed as percentage of element oxide.

Table 7c. Chemical (OES) compositions of the SJs from Thebes published by Catling and Millett (1965) and a SJ from Amnisos, previously unpublished. All compositions have been corrected according to factors in Jones (1986b, table 2.5) and are expressed as percentage of element oxide.

Table 8. Reference material analysed by OES arranged according to region, findspot, type and date of pottery, and publication.
Table 9. AAS reference material listed geographically (north to south in Greece and then Cyprus through Egypt).

Table 10. Descriptions of reference material analyzed by OES or AAS, whose composition characteristics are presented in Table 11.

Table 11. Composition characteristics of the reference material expressed as mean of the percentage of element oxide concentrations.

Table 12. Mycenae: fine and coarse-textured pottery (CP = cooking pot, bs = body sherd); compositions determined by AAS and expressed as percentage of element oxides.

Table 13. Chania: coarse and plain wares.

Table 14. Hagios Giorgios: reference pottery and its compositional characteristics by AAS, expressed as percentage of element oxides.

Table 15. Chemical work by NAA (unless otherwise stated) on Minoan pottery published since 1987 and arranged according to pottery date.

Table 16. Three groups of SJs (including Linear-B-inscribed non-SJ vases and miscellaneous samples) isolated by principal components analysis (PCA).

Table 17. Provenance of the main fabrics.

Table 18. Composition characteristics of reference groups for relevant sites/regions.

Table 19. Associations between SJs (and miscellaneous samples) and reference groups.

Table 20. Associations for jars analyzed (by OES) in WCISJ.

Table 21. Associations for those jars analyzed (by OES) by Catling and Millett (1965) and Catling and Jones (1977).

Table 22. Other petrographic analyses.

Table 23. Caps/plugs/stoppers analyzed by AAS, NAA, and petrography.

Table 24. Classification of the inscribed jars associated with West Crete.

Table 25. Other chemical analyses of SJs and stoppers.

Table 26. The fabric groups, their suggested areas of provenance, and chemical associations.

Table 27. Summary of typological, chemical, and petrographic results, and suggested associations.

Table 28. Associations of typegrouped jars.

Table 29. Associations of grouped jars.

Table 30. Tabular summary of typological characteristics associated with each production zone.
List of Graphs

Graphs 1a–f. Typegroup proportions: H(MD)/H and D/H.
Graphs 2a–e. Typegroup proportions: H(MD)/H and D/H.
Graphs 3a–d. Group proportions H(MD)/H and D/H.
Graph 4. Comparison of major and minor element contents as determined at BCRA, Venice, and Berlin (all XRF), and RLHA and FL (both AAS).
Graph 5a. TH05: comparison of compositions (% oxide) determined by OES1 (striped), OES2 (gray), and AAS (black).
Graph 5b. TH05: comparison of compositions (% oxide) determined by OES1 (white), OES2 (gray), and AAS (black).
Graph 6a. Comparison of the mean and the 1-standard-deviation ranges of the group compositions of LH IIIB pottery from Mycenae.
Graph 6b. Comparison of the mean and the 1-standard-deviation ranges of the group compositions of LH IIIB pottery from Thebes.
Graph 7. AAS data of magnesium and chromium (left) and magnesium and calcium (right) oxide plots for fine (F), coarse (C with inverted triangle) and heavy (H with triangle) wares at Mycenae.
Graph 8. AAS data of chromium and magnesium (left) and magnesium and calcium (right) oxide plots for plain (P) and coarse (C) wares from Chania.
Graph 9. The distribution of Mn oxide contents in the reference material from Mycenae (left) and Chania (right).
Graph 10. Discriminant analysis plot of composition groups in Crete representing Knossos (K full circle), Chania (plain [full square] and coarse [open triangle] wares), and Hagios Giorgios (HG open square).

Graph 11. Discriminant analysis of AAS reference groups for Thebes (T open square), Mycenae (M triangle), Knossos (K open circle), and Chania (C full square).

Graph 12a. Mg-Cr plot for OES data of the reference groups: Routsi (triangle); Menelaion, Sparta (inverted triangle); Mycenae (+); Knossos (circle).

Graph 12b. Mg-Ca plot for OES data of the reference groups: Routsi (triangle); Menelaion, Sparta (inverted triangle); Mycenae (+); Knossos (circle).

Graph 13. Element (oxide) distributions for all SJs.

Graph 14. Principal component (PC) plot of the total SJ data set (excluding caps, stoppers, and plugs), suggesting two large overlapping groups, I and II, and a small group III (left).

Graph 15. Principal component (PC) plot of the total SJ data set using Mg, Cr, Ni, and Ca contents only, revealing four potential groupings as shown with arrows.

Graph 16a. Cr-Mg oxide plot of the total SJ data set.

Graph 16b. Ca-Mg oxide plot of the total SJ data set.

Graph 17a. Cr-Mg oxide plot for SJs found on Crete and in the Dodecanese.

Graph 17b. Ca-Mg oxide plot for SJs found on Crete and in the Dodecanese.

Graph 18. SJs found at Chania and the Rethymnon area.

Graph 19a. Cr-Mg oxide plot for SJs found in Central Crete.

Graph 19b. Ca-Mg oxide plot for SJs found in Central Crete.

Graph 19c. Cr-Mg oxide plot for SJs at Knossos.

Graph 19d. Cr-Mg oxide plot for SJs found at Kommos and Malia.

Graph 20a. Cr-Mg oxide plot from SJs found in East Crete and the Dodecanese.

Graph 20b. Ca-Mg oxide plot from SJs found in East Crete and the Dodecanese.

Graph 21a. Ca-Mg oxide plot for SJs found in the Peloponnese.

Graph 21b. Cr-Mg oxide plot for SJs found at Mycenae (ex. MYC65).

Graph 21c. Cr-Mg oxide plot highlighting SJs found at Pylos and Sparta, Menelaion.

Graph 21d. Cr-Mg oxide plot highlighting SJs found at Tiryns (triangle).

Graph 21e. Cr-Mg oxide plot highlighting SJs found at Zygouries and Kythera.

Graph 21f. Cr-Mg oxide plot for caps, stoppers, and plugs at Mycenae.

Graph 21g. Ca-Mg oxide plot for caps, stoppers, and plugs at Mycenae.

Graph 22a. Cr-Mg oxide plot for SJs found in central Greece.

Graph 22b. Ca-Mg oxide plot for SJs found in central Greece.

Graph 22c. Cr-Mg oxide plot highlighting SJs found at Thebes.

Graph 22d. Cr-Mg oxide plot highlighting SJs found in central Greece apart from Thebes.
Graph 23a. Cr-Mg oxide plot for SJs found on Cyprus.

Graph 23b. Cr-Mg oxide plot for SJs found in the Levant, Egypt, and Sardinia.

Graph 24a. Mg-Cr oxide plot for the reference compositions at Knossos (inverted triangle), Chania plain ware (circle), and Chania coarse ware (open circle).

Graph 24b. Mg-Ca oxide plot for the reference compositions at Knossos (inverted triangle), Chania plain ware (circle), and Chania coarse ware (open circle).

Graph 25a. Mg-Cr oxide plot of OES data of the reference compositions for Knossos (full circle), Kommos (open circle), Palaikastro (triangle), and Chania (inverted triangle).

Graph 25b. Mg-Ca oxide plot of OES data of the reference compositions for Knossos (full circle), Kommos (open circle), Palaikastro (triangle), and Chania (inverted triangle).

Graph 26. Mg-Cr oxide plot of AAS data for the reference compositions for Knossos (full circle), Mycenae (+), Thebes (open triangle), and Chania (inverted triangle).

Graph 27. Mg-Ca oxide plot AAS data for the reference compositions for Knossos (full circle), Mycenae (+), Thebes (open triangle), and Chania (inverted triangle).

Graph 28a. Mg-Cr oxide plot of AAS data for the reference compositions for Rhodes (+), Knossos (full circle), Thebes (open triangle), and Chania (inverted triangle).

Graph 28b. Mg-Ca oxide plot of AAS data for the reference compositions for Rhodes (+), Knossos (full circle), Thebes (open triangle), and Chania (inverted triangle).

Graph 29a. Mg-Cr oxide plot of AAS data for the reference compositions for Maroni (triangle) and Kalavassos (inverted triangle) on Cyprus, superimposed on the compositions presented in Graph 28.

Graph 29b. Mg-Ca oxide plot of AAS data for the reference compositions for Maroni (triangle) and Kalavassos (inverted triangle) on Cyprus, superimposed on the compositions presented in Graph 28.

Graph 30. Mg-Cr oxide plot for the reference samples at Mycenae (coarse: inverted triangle; fine: full circle; “heavy”: triangle) and MYC02LinB, MYC03, MYC06, MYC07, MYC09, MYC10, MYC12, and MYC17.
List of Figures

Figure 1. Stirrup jars from Cape Gelidonya and Ialysos.
Figure 2. Stirrup jars from Ialysos.
Figure 3. Stirrup jars from Knossos.
Figure 4. Stirrup jars from Knossos and Kommos.
Figure 5. Stirrup jars from Malia and Mycenae.
Figure 6. Stirrup jars from Mycenae.
Figure 7. Stirrup jars from Mycenae.
Figure 8. Stirrup jars from Mycenae.
Figure 9. Stirrup jars from Mycenae and Karpathos (Pigadia).
Figure 10. Stirrup jars from Karpathos (Pigadia) and Sparta Menelaion.
Figure 11. Stirrup jars from Thebes.
Figure 12. Stirrup jars from Thebes.
Figure 13. Stirrup jars from Thebes.
Figure 14. Stirrup jars from Thebes.
Figure 15. Stirrup jars from Thebes.
Figure 16. Stirrup jars from Thebes and Uluburun.
Figure 17. Stirrup jars from Uluburun and Zygouries.
Figure 18. Stirrup jar from Zygouries.
List of Plates

Plate 1. Stirrup jars from Athens, Cyprus, Dhenia, and Eleusis.
Plate 2. Stirrup jars from Episkopi, Bamboula, and Ialysos.
Plate 3. Stirrup jars from Ialysos.
Plate 4. Stirrup jars from Ialysos.
Plate 5. Stirrup jars from Ialysos and Knossos.
Plate 6. Stirrup jars from Knossos.
Plate 7. Stirrup jars from Knossos.
Plate 8. Stirrup jars from Knossos.
Plate 9. Stirrup jars from Kourion, Minet el Beida, and Mycenae.
Plate 10. Stirrup jars from Mycenae.
Plate 11. Stirrup jars, caps, and plug from Mycenae.
Plate 12. Stirrup jars from Mycenae.
Plate 13. Stirrup jars from Mycenae.
Plate 14. Stirrup jars from Mycenae.
Plate 15. Stirrup jars and sherd from Mycenae.
Plate 16. Stirrup jars from Mycenae.
Plate 17. Stirrup jars from Mycenae and Karpathos (Pigadia).
Plate 18. Stirrup jars from Karpathos (Pigadia) and Palaikastro.
Plate 19. Stirrup jars from Pylos.
Plate 20. Stirrup jars from Pylos and Thebes.
Plate 21. Stirrup jars from Thebes.
Plate 22. Stirrup jars from Thebes.
Plate 23. Stirrup jars from Thebes.
Plate 24. Stirrup jars from Thebes.
Plate 25. Stirrup jars from Thebes.
Plate 26. Stirrup jars from Thebes.
Plate 27. Stirrup jars from Thebes.
Plate 28. Stirrup jars from Thebes.
Plate 29. Stirrup jars from Thebes.
Plate 30. Stirrup jars from Thebes and Zygouries.
Plate 31. Variability in Fabric 1 SJs, with frequent quartzite, schist, and phyllite from Chania (KH09, KH11, KH12, KH19, KH22, KH39, KH40). Other examples of Fabric 1 SJs from Gla (GLA02), Knossos (KN12), Kommos (KO25), Malia (MA01), and Mycenae (MYC99).
Plate 33. Fabric 2 SJ with frequent quartzite, schist, phyllite, and common microfossils from Mycenae (MYC83). Fabric 3 SJ from Chania (KH38). Fabric 4 SJs with metamorphic rocks and microfossils from Hala Sultan Teke (HST01m), Chania (KH48, KH50, KH57), and Knossos (KN20). Fabric 5 SJ with cataclastic rock fragments from Thebes (TH01). Fabric 6 with volcanic rock fragments from Uluburun (ULB05). Fabric 7 SJs with chert from Uluburun (ULB06) and Mycenae (MYC87). Fabric 8 SJ with chert and serpentine from Enkomí (ENK12).
Plate 34. Fabric 8 SJs with chert and serpentine from Enkomí (ENK13), Knossos (KN09), Kommos (KO16), Malia (MA05), Thebes (TH31), and Uluburun (ULB03). Fabric 9 SJs with siltstone, igneous rocks, and chert from Iria (IR02), Kommos (KO13), and Mycenae (MYC59). Fabric 10 SJs with siltstone, igneous rocks, chert, and microfossils from Iria (IR05, IR07) and Uluburun (ULB01).
Plate 35. Fabric 10 SJ with siltstone, igneous rocks, chert, and microfossil from Uluburun (ULB08). Fabric 11 SJs with rounded schist, phyllite, siltstone, and altered volcanic rock from Kommos (KO06, KO21, KO22) and Mycenae (MYC43). Fabric 12 SJ dark siltstone with polycrystalline quartz from Chania (KH42). Fabric 13 SJ with red siltstone from Chania (KH56). Fabric 14 SJs with dark mudstone and siltstone from Chania (KH07, KH28, KH55), Malia (MA06), and Mycenae (MYC20).
Plate 36. Fabric 14 SJ with dark mudstone and siltstone from Mycenae (MYC66). Fabric 15 SJs with metamorphic rocks, altered volcanic stone, and calcimudstone from Chania (KH47) and Kommos (KO09). Fabric 16 SJs with clay pellets from Chania (KH51) and Mycenae (MYC38). Fabric 17 SJ with clay pellets from Mycenae (MYC104). Fabric 18 with coarse igneous fragments from Kommos (KO05m). Fabric 19 SJ, fine calcitic from Mycenae (MYC39). Fabric 20 SJ with frequent quartz from Chania (KH32). Fabric 21 SJ from Chania (KH01). Fabric 23 SJ with biotite schist from Kommos (KO08). Fabric 24 SJ from Kythera (KY01).
The study of Aegean coarse ware stirrup jars presented in this volume has several origins. Aspects of these jars formed the basis of Haskell’s doctoral dissertation and subsequent research. Following the publication in 1980 of Catling et al.’s study of the Linear B inscribed jars that included their chemical and inscriptional analysis, Haskell, Catling, Jones, and Killen planned a larger program of analysis. This was accomplished in the Fitch Laboratory at the British School at Athens between 1986 and 1991. The petrographic element of the study became possible in the later 1980s as Day, at that time Fellow in Ceramic Petrology in the Fitch Laboratory, had, with the aid of the Michael Ventris Award, completed a re-examination of a number of coarse ware stirrup jars found at Mycenae originally studied by John Riley (1980). With L. Joyner, Day carried out the petrographic analyses at the Department of Archaeology at Sheffield University.

Financial support for the project has been provided from several sources: the University of London’s Institute of Classical Studies Michael Ventris Award for Mycenaean Studies to Day in 1990; and the National Endowment for the Humanities and Fulbright Commission at the American School of Classical Studies at Athens, and the Cullen Faculty Development Fund of Southwestern University, to Haskell.

We have many acknowledgments to record. At the institutional level, we are indebted to the British School at Athens, its Council and Fitch Laboratory Committee; the Archaeological Service of the Greek Ministry of Culture; and the American School of Classical Studies.

For permission to sample material in Greece, we thank the following: several Ephorates of Prehistoric and Classical Antiquities—1st (Athens), 2nd (Kythera), 4th (Nauplion), 5th (Sparta), 7th (Olympia), 9th (Thebes), 22nd (Rhodes), 23rd (Herakleion), and 25th (Chania); the National Archaeological Museum, Athens; Dr. K. Demakopoulou (Mycenae); Prof. S. Iakovidis (Gla); Dr. M. Vlazaki (Chania); Dr. Y. Tzedakis and Ms. E. Padopoulou (Armenoi).
Dr. E. Hallager, Dr. B. Hallager, Prof. V. Watrous, Prof. J. Shaw, Dr. C. Morris, and Dr. A. Farnoux assisted us with the sampling at sites on Crete; Dr. E.B. French at Mycenae; Dr. T. Marketou on Rhodes; and the late Prof. P. Åström at Hala Sultan Tekke.

For permission to study, photograph, and draw jars in Greece, and for assistance with this work, we thank the following: Dr. E.B. French at Mycenae; Dr. H.W. Catling and the late E.A. Catling (for drawings) at The Menelaion, Sparta; Dr. C.K. Williams II at Corinth; Dr. J. McK. Camp at Athens (Agora); the late Dr. S.A. Immerwahr at Athens (Agora); and Dr. V. Aravantinos at Thebes.

We thank also the Department of Greek and Roman Antiquities, British Museum (London); the Department of Antiquities, Ashmolean Museum (Oxford) and Prof. M. Vickers; the Department of Antiquities of Cyprus and Prof. V. Karageorghis; the Department of Oriental Antiquities, Musée de Louvre (Paris), and Dr. A. Caubet; Dr. L. Vagetti and the late Dr. L. Ceruti (Antigori); Prof. E. de Miro (Cannatello); San Antonio Museum of Art and Dr. C. Picón; the University of Pennsylvania Museum of Archaeology and Anthropology (Philadelphia) and the late Dr. G.R. Edwards; Prof. M. Benzi (Ialysos); l’Ecole française d’Athènes and Prof. J. Driessen (Malia). For access to Iria jars, we thank Prof. Y. Lellos, Mr. Ch. Pennas, and the late Mr. N. Tsouchlos. As regards the Gelidonya wreck, for permissions, information, and support we thank Prof. G. Bass; for the Uluburun wreck, Profs. C. Pulak and J. Rutter. We are very grateful to Prof. C. Knappett for allowing us access to his internal report on stirrup jars at Malia and the thin sections of his study.

At the British School at Athens, Jones is grateful to Ms. E. Louka for considerable technical assistance in the Fitch Laboratory, and Ms. H. Clark for administrative assistance. At Southwestern University, Ms. M. Bliss provided invaluable assistance with the digitizing of photographs and drawings, and Ms. K. Lessard provided additional assistance beyond the call of duty.

We are grateful to our respective institutions for their support and patience: Classics Program, Southwestern University, Texas (Haskell); Department of Archaeology, Glasgow University (Jones); Department of Archaeology and Prehistory, Sheffield University (Day); and Faculty of Classics, Cambridge University (Killen).

For discussion and advice, our thanks go to Penelope Mountjoy, Lisa French, Erik and Birgitta Hallager, Nicolle Hirschfeld, Hans Mommsen, Jonathan Tomlinson, Vassilis Kilikoglou, Evangelia Kiriatzi, Jeremy Rutter, John Bennet, and Caroline Jackson. Jones thanks Gerwulf Schneider and Lorenzo Lazzarini for access to their data for the Lefkandi clay standard.

And finally, to Hector Catling, to whom we are delighted to dedicate this volume, we offer our greatest thanks for his long-standing guidance and encouragement.
List of Abbreviations

Chronology

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>Cypro-Minoan</td>
</tr>
<tr>
<td>EIA</td>
<td>Early Iron Age</td>
</tr>
<tr>
<td>EM</td>
<td>Early Minoan</td>
</tr>
<tr>
<td>MM</td>
<td>Middle Minoan</td>
</tr>
<tr>
<td>LB</td>
<td>Late Bronze Age</td>
</tr>
<tr>
<td>LC</td>
<td>Late Cycladic</td>
</tr>
<tr>
<td>LH</td>
<td>Late Helladic</td>
</tr>
<tr>
<td>LM</td>
<td>Late Minoan</td>
</tr>
<tr>
<td>ProBA</td>
<td>Protohistoric Bronze Age</td>
</tr>
</tbody>
</table>

Chemical Analyses

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS</td>
<td>atomic absorption spectrometry</td>
</tr>
<tr>
<td>ALCA</td>
<td>average link cluster analysis</td>
</tr>
<tr>
<td>CV</td>
<td>coefficient of variation</td>
</tr>
<tr>
<td>DA</td>
<td>discriminant analysis</td>
</tr>
<tr>
<td>DF</td>
<td>discriminant function</td>
</tr>
<tr>
<td>ICP-ES</td>
<td>inductively coupled plasma–emission spectrometry</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>NAA</td>
<td>neutron activation analysis</td>
</tr>
<tr>
<td>OES</td>
<td>optical emission spectroscopy</td>
</tr>
<tr>
<td>PCA</td>
<td>principal components analysis</td>
</tr>
<tr>
<td>WCA</td>
<td>wet chemical analysis</td>
</tr>
<tr>
<td>XRF</td>
<td>X-ray fluorescence analysis</td>
</tr>
</tbody>
</table>

Findspots of Cataloged Analyzed Samples

<table>
<thead>
<tr>
<th>Code</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKM</td>
<td>Akanthou, Moulos</td>
</tr>
<tr>
<td>AM</td>
<td>Amnisos</td>
</tr>
<tr>
<td>ANG</td>
<td>Angeliana</td>
</tr>
<tr>
<td>ANT</td>
<td>Antigori</td>
</tr>
<tr>
<td>AR</td>
<td>Armenoi</td>
</tr>
<tr>
<td>ATH</td>
<td>Athens</td>
</tr>
</tbody>
</table>
Laboratories

BCRA British Ceramic Research Association, Stoke-on-Trent
FL Fitch Laboratory, British School at Athens

HISKP Helmholtz Institut für Strahlen und Kernphysik der Universität Bonn
NCSR National Centre for Scientific Research “Demokritos,” Athens
RLAHA Research Laboratory for Archaeology and the History of Art, Oxford University

Measurements

avg. average
ca. approximately
D diameter
est. estimated
g gram
H height
m meter
µ micron
MD maximum diameter
mg milligram
mm millimeter
µm micrometer
ppm parts per million

Petrographic Analysis

PE petrographic examination
PPL plane-polarized light
XP crossed polars

Pottery Typology

LoD light-on-dark
DoL dark-on-light
dwl deep wavy line (octopus derivative)
ddwl double deep wavy line (octopus derivative)
SJ transport stirrup jar
ISJ Linear B inscribed stirrup jar

References

LIST OF ABBREVIATIONS

FS Furumark (1941b) Shape
FM Furumark (1941b) Motif

Special Catalog Number Formats

AKM01 Bold indicates cataloged SJ.

ATH01 Italicized catalog number indicates SJ illustrated by a photograph in the plates.

GEL02 Underlined catalog number indicates SJ illustrated by a drawing in the figures.

IAL02 Italicized and underlined catalog number indicates SJ illustrated by both a photo (in the plates) and a drawing (in the figures).

KH23LinB Catalog number with *LinB* indicates vase (not SJ) inscribed with Linear B.

ENK06m Catalog number with *m* indicates vessel of unknown or non-SJ type.

MYC22# Catalog number with *#* indicates stopper (cap or plug).

Varia
cat. no. catalog number
exc. no. excavation number
HOM House of the Oil Merchant, Mycenae
HWM House of the Wine Merchant, Mycenae
in prep. in preparation
inv. no. inventory number
pers. comm. personal communication