Alatzomouri Pefka
A Middle Minoan IIB Workshop Making Organic Dyes
Alatzomouri Pefka

A Middle Minoan IIB Workshop
Making Organic Dyes

edited by

Vili Apostolakou, Thomas M. Brogan, and Philip P. Betancourt

with contributions from

Vili Apostolakou, Philip P. Betancourt, Thomas M. Brogan, Konstantinos Chalikias, Alison M. Crandall, Joanne Cutler, Heidi M.C. Dierckx, Andrew Koh, Evi Margaritis, Floyd W. McCoy, Dimitra Mylona, Thomas Palaima, and Marie N. Pareja

Published by
INSTAP Academic Press
Philadelphia, Pennsylvania
2020
Table of Contents

List of Tables.. vii
List of Figures ... ix
List of Plates ... xv
Acknowledgments ... xvii
List of Abbreviations .. xix
1. Introduction, Vili Apostolakou, Thomas M. Brogan, and Philip P. Betancourt........ 1
2. Excavation at Pefka, Vili Apostolakou, Thomas M. Brogan, Konstantinos Chalikias, and Philip P. Betancourt... 3
3. Rock-Cut Basins: Form and Function, Philip P. Betancourt 17
4. Pottery, Philip P. Betancourt and Thomas M. Brogan... 29
5. Prism Seal, Thomas M. Brogan ... 79
6. Chipped and Ground Stone Tools, Heidi M.C. Dierckx 83
7. Animal Remains, Dimitra Mylona ... 91
8. Archaeobotanical Remains, Evi Margaritis ... 95
9. Drain Fragments, Philip P. Betancourt ... 99
10. Textile Tools, Joanne Cutler* and Thomas M. Brogan ... 103
11. Stone Vessels, Philip P. Betancourt .. 107
12. Suspension Device, Philip P. Betancourt .. 109
13. Organic Residue Studies, Andrew Koh, Vili Apostolakou, Marie N. Pareja,
 Alison M. Crandall, and Philip P. Betancourt .. 111
14. Geology and Geoarchaeology, Floyd W. McCoy ... 119
15. Porphureion and Kalkhion and Minoan-Mycenaean Purple Dye Manufacture and Use,
 Thomas Palaima ... 123
16. Discussion and Conclusions, Philip P. Betancourt, Thomas M. Brogan, and Vili Apostolakou 129
References .. 139
Concordance of Accession and Catalog Numbers ... 155
Index .. 161
Tables
Figures
Plates
List of Tables

Table 1. Distribution of chipped and ground stone tools by context.
Table 2. Uncataloged fragments of pebbles and cobbles without wear marks.
Table 3. Uncataloged complete pebbles and cobbles without wear marks.
Table 4. Stone tools from the well or cistern (A1112).
Table 5. Representation of mammalian remains by taxonomic and anatomical parts.
Table 6. Dental eruption and wear data.
Table 7. Taxonomic representation of marine mollusks and crustaceans based on counts of minimum number of individuals (MNI).
Table 8. Plant remains retrieved by flotation.
Table 9. Colors of the clay fabrics, heights of the side walls, and widths of the bases (where preservation permits measurements) for the 11 drain sections found at Pefka.
Table 10. Diagnostic compounds from chromatograms in Figures 88A–104B.
Table 11. Objects analyzed by GC-MS and proposed contents.
Table 12. Record of water retention in basins following filling after heavy rains.
List of Figures

Figure 1. Map of Crete.
Figure 2. Map of the isthmus of Ierapetra.
Figure 3. Plan of the Pefka workshop showing the excavated trenches and section A through the row of basins.
Figure 4. Plan of A1101 (Basin 1), A1118 (Basin 4), and vicinity.
Figure 5. Plan of A1104 (Basin 5) and vicinity.
Figure 6. Plan of part of Trench A1100 with rectangular Basin 2 and nearby areas.
Figure 7. Plan of Trenches A1100 and A3000.
Figure 8. Plan of A1104, A1115, A1118, and A1119.
Figure 9. Vertical section (north–south) of the well or cistern (A1112), facing west.
Figure 10. Plan of part of Trench A1100 and vicinity.
Figure 11. Plan of Trench A1126.
Figure 12. Plan of Trench A2000.
Figure 13. Plan of Trench A3000.
Figure 14. Plan of Trench A4000 with A5100 (Basin 8).
Figure 15. Plan of Trench A4000 and vicinity.
Figure 16. Plan of Trenches A15000, A17000, A22000, and A52000.
Figure 17. Plan of Trenches A18000 and A19000.
Figure 18. Plan of Trenches A20000, A23000, and A24000.
Figure 19. Plan of the workshop showing the numbers of the basins (1–9) and other features.
Figure 20. Plan of Basin 4 (A1118) and the stone walls.
Figure 21. Plan and cross-sections of Basin 1 (A1101).
Figure 22. Plan and cross-sections of Basin 2 (A1114).
Figure 23. Plan of Basins 4 (A1118) and 5 (A1104) and vicinity.
Figure 24. Plan and cross-sections of Basin 3 (A1123).
Figure 25. Plan and cross-sections of Basin 4 (A1118).
Figure 26. Plan and cross-sections of Basin 5 (A1104).
Figure 27. Plan and cross-sections of Basin 6 (A2010).
Figure 28. Plan and cross-sections of Basin 7 (A4002).
Figure 29. Plan and cross-sections of Basin 8 (A5100).
Figure 30. Plan and cross-sections of Basin 9 (A5200).
Figure 31. Plan and cross-sections of Feature 11 (A23002).
Figure 32. Plans and east–west cross-sections of Mortars 1–3.
Figure 33. Open vessel (1), shallow bowls (2, 9–15, 17, 18), rounded cups (3–5), offering table (6), closed vessel (7), and plate (8).
Figure 34. Shallow bowl (19), tall conical cups (20–22), bowls (23–30), and possible basin (31).
Figure 35. Basins and bowls (32–40).
Figure 36. Basins (41–49), bowl (50), and basin with scoring inside (51).
Figure 37. Basins with scoring inside (52–55) and straight-sided cups (56–68).
Figure 38. Straight-sided cups (69–84).
Figure 39. Straight-sided cups (85–114).
Figure 40. Straight-sided cups (115–133) and straight-sided or conical cups (134–144).
Figure 41. Straight-sided or conical cups (145–150), cylindrical cups (151–160), rounded cup (161), and semiglobular cups (162, 163).
Figure 42. Semiglobular cups (164–167) and carinated cups (168–181).
Figure 43. Carinated cups (182–199).
Figure 44. Carinated cups (200–209), carinated cup with low carination (210), carinated cup with scalloped rim (211), carinated cup with spout (212), and miscellaneous cups (213–219).
Figure 45. Lamp (220), kantharoi with undulating rims (221, 222), carinated kantharos (223), tall carinated vessel (224), open vessels (225, 226), semiglobular cup/jug (227), and hole-mouthed jars (228–230).
Figure 46. Hole-mouthed jars (231–236).
Figure 47. Bridge-spouted jars (237–243) and jars of various classes (244, 245).
Figure 48. Jars of various classes (246–259).
Figure 49. Jars of various classes (260–266) and jugs (267–269).
Figure 50. Jugs (270–279).
Figure 51. Jugs (280–289).
Figure 52. Jugs (290–298).
Figure 53. Wide-mouthed jugs (299, 301), carinated jugs (303–306), and amphorae (307, 308).
Figure 54. Amphorae (309–319).
Figure 55. Miniature vessels (320–327) and pithoi (328–335).
Figure 56. Pithoi (336–345) and tripod jug (346).
Figure 57. Tripod jar (347), triple vessel (348), pyxides (349, 350), and closed vessels (351–359).
Figure 58. Closed vessels (360–371).
Figure 59. Closed vessels (372–383).
Figure 60. Closed vessels (384–405).
Figure 61. Closed vessels (406–422).
Figure 62. Closed vessels (423–432).
Figure 63. Closed vessels (433–438), jar with tripod legs (439), rhyton (440), cylindrical stand (441), pyxis-like vessel (442), and covers (443–448).
Figure 64. Covers (449–451), lids (452–458), and cooking dish (459).
Figure 65. Cooking dishes (460–468) and tripod offering stands (469–472).
Figure 66. Tripod offering stands (473–479).
Figure 67. Tripod offering stands (480–486).
Figure 68. Tripod offering stands (487–491), tripod kalathoi (492, 493), kernos (494), four-legged offering stand (495), and miniature tripod (496).
Figure 69. Trays and tripod trays (497–507) and tripod bowls (508–511).
Figure 70. Tripod bowl (512), tripod brazier (513), tripod cup (514), and tripod cooking pots (515–523).
Figure 71. Tripod cooking pots (525–527, 529–535).
Figure 72. Tripod cooking pots (536–545).
Figure 73. Tripod cooking pots (546–558).
Figure 74. Tripod cooking pots (559–570).
Figure 75. Tripod cooking pots (571–576), heating stands (577, 578), and Hellenistic open vessel (579).
Figure 76. Prism seal (580), faces a–c; obsidian tools (581–583); ground stone tools: pounders (584, 588), pounder-abraders (585, 586), abrader (587), and grinder (589).

Figure 77. Ground stone tools: whetstones (590–592), weight (593), pounders (594, 595, 597–600, 603), hammerstone (596), pounder-abraders (601, 602), and grinder (604).

Figure 78. Ground stone tools: pounders (605, 608–611, 614, 615), abraders (606, 613, 616), and hammerstones (607, 612, 617).

Figure 79. Ground stone tools: hammerstones (618, 629, 630), grinder (619), pounders (620–623, 626, 627), pounder-abraders (624, 625), and abrader (628).

Figure 80. Ground stone tools: pounder-abraders (631, 632, 635), pounders (633, 634, 639), abraders (636–638), pestle (640), polisher (641), and pounding platform (642).

Figure 81. Ground stone tools: querns (643–645), whetstones (646–653), weights (655–660), and mace head (661).

Figure 82. Size distribution of limpets (Patella sp.).

Figure 83. Size distribution of whole purple shellfish (Hexaplex trunculus).

Figure 84. Drain fragments (662–664).

Figure 85. Drain fragments (665–670).

Figure 86. Drain fragments (671, 672) and stone vessels (677, 678).

Figure 87. Clay suspension device with double handles (679).

Figure 88A. Bowl 50: GC-MS chromatogram for ARCHEM no. 2873.

Figure 88B. Bowl 50: GC-MS peak report for ARCHEM no. 2873 showing total ion current (TIC).

Figure 89A. Carinated kantharos 223: GC-MS chromatogram for ARCHEM no. 1553.

Figure 89B. Carinated kantharos 223: GC-MS peak report for ARCHEM no. 1553 showing total ion current (TIC).

Figure 90A. Hole-mouthed jar 228: GC-MS chromatogram for ARCHEM no. 2843.

Figure 90B. Hole-mouthed jar 228: GC-MS peak report for ARCHEM no. 2843 showing total ion current (TIC).

Figure 91A. Hole-mouthed jar 231: GC-MS chromatogram for ARCHEM no. 1515.

Figure 91B. Hole-mouthed jar 231: GC-MS peak report for ARCHEM no. 1515 showing total ion current (TIC).

Figure 92A. Carinated jug 306: GC-MS chromatogram for ARCHEM no. 1445.

Figure 92B. Carinated jug 306: GC-MS peak report for ARCHEM no. 1445 showing total ion current (TIC).

Figure 93A. Oval-mouthed amphora 308: GC-MS chromatogram for ARCHEM no. 1698.

Figure 93B. Oval-mouthed amphora 308: GC-MS peak report for ARCHEM no. 1698 showing total ion current (TIC).

Figure 94A. Triple vessel 348 (front vessel): GC-MS chromatogram for ARCHEM no. 1717b.
Figure 94B. Triple vessel 348 (front vessel): GC-MS peak report for ARCHEM no. 1717b showing total ion current (TIC).

Figure 95. Triple vessel 348 (left rear vessel): GC-MS chromatogram for ARCHEM no. 2728.

Figure 96A. Triple vessel 348 (right rear vessel): GC-MS chromatogram for ARCHEM no. 2734.

Figure 96B. Triple vessel 348 (right rear vessel): GC-MS peak report for ARCHEM no. 2734 showing total ion current (TIC).

Figure 97A. Tripod offering stand 484: GC-MS chromatogram for ARCHEM no. 1654b.

Figure 97B. Tripod offering stand 484: GC-MS peak report for ARCHEM no. 1654b showing total ion current (TIC).

Figure 98A. Tripod offering stand 485: GC-MS chromatogram for ARCHEM no. 1659b.

Figure 98B. Tripod offering stand 485: GC-MS peak report for ARCHEM no. 1659b showing total ion current (TIC).

Figure 99A. Four-legged offering stand 495: GC-MS chromatogram for ARCHEM no. 2878b.

Figure 99B. Four-legged offering stand 495: GC-MS peak report for ARCHEM no. 2878b showing total ion current (TIC).

Figure 100A. Tripod cooking pot 516: GC-MS chromatogram for ARCHEM no. 1462b.

Figure 100B. Tripod cooking pot 516: GC-MS peak report for ARCHEM no. 1462b showing total ion current (TIC).

Figure 101A. Tripod cooking pot 517: GC-MS chromatogram for ARCHEM no. 2882b.

Figure 101B. Tripod cooking pot 517: GC-MS peak report for ARCHEM no. 2882b showing total ion current (TIC).

Figure 102A. Tripod cooking pot 526: GC-MS chromatogram for ARCHEM no. 2469.

Figure 102B. Tripod cooking pot 526: GC-MS peak report for ARCHEM no. 2469 showing total ion current (TIC).

Figure 103A. Tripod cooking pot 571: GC-MS chromatogram for ARCHEM no. 1601b.

Figure 103B. Tripod cooking pot 571: GC-MS peak report for ARCHEM no. 1601b showing total ion current (TIC).

Figure 104A. Heating stand 577: GC-MS chromatogram for ARCHEM no. 1554b.

Figure 104B. Heating stand 577: GC-MS peak report for ARCHEM no. 1554b showing total ion current (TIC).

Figure 105. Generalized lithologic and stratigraphic section in the area surrounding Pefka mapped from exposures in fields, road cuts, quarries, and sea cliffs.

Figure 106. Topography of the area at and nearby the industrial area.

Figure 107. Plan showing archaeological remains on Alatzomouri Hill.
List of Plates

Plate 1A. Aerial view of the workshop at Alatzomouri Pefka.

Plate 1B. The grove of pines that conceals the workshop at Alatzomouri Pefka, as seen from the next higher terrace on Alatzomouri Hill.

Plate 2A. Road leading to the village of Pacheia Ammos from just west of the site of Pefka, looking north.

Plate 2B. Pile of unworked stones from the destruction of storage sheds built by the Italian army during World War II, looking west.

Plate 2C. Basin 1 (A1101), looking north.

Plate 3A. Relationship between Basin 1 (A1101), and Basin 4 (A1118) with its channel (Channel 1, A1115) leading out of its northeast corner (looking north).

Plate 3B. Large rectangular carved depression (Basin 2, A1102), looking east.

Plate 4A. Cylindrical cutting (a well or cistern, A1112) in the south side of Basin 2 (A1122) during excavation, looking north.

Plate 4B. Basin 3 (A1123), showing the roots that damaged it, looking north.

Plate 5A. Basin 4 (A1118), looking north.

Plate 5B. Detail of the channel (Channel 1, A1115) at the northeast corner of Basin 4 (A1118), looking north.
Plate 6A. The relationship between Basins 1, 2, 4, and 5, showing Channel 1 leading from Basin 4 to Basin 2, looking north.

Plate 6B. Aerial photograph of the eastern side of the workshop, looking north.

Plate 7A. Basin 5 (A1104), looking north.

Plate 7B. Rubble wall and fallen stones between Basins 4 and 5 (A1118 and A1104, respectively), looking north.

Plate 8A. Mortar 1 (A1117) between Basin 2 (A1122) and Basin 5 (A1104), looking south.

Plate 8B. Basin 6 (A2010), looking north.

Plate 9A. The long trough leading into Basin 6 (A2010) from the west, looking northwest.

Plate 9B. Natural shallow depression in Trench A3000 (Feature 10, A3001), located southwest of Trench A1100.

Plate 10A. Basin 7 (A4002) and the triangular trough at its western side, looking north.

Plate 10B. Basin 8 (A5100), looking south.

Plate 11A. Basin 9 (A5200) in 2007 before the trench to the east was excavated, looking north.

Plate 11B. Irregular side of Basin 9 (A5200) cut to allow dyed wool to drain into the vat.

Plate 12. Rounded cups (3, 4), shallow bowls (9, 11, 17), tall conical cups (20, 21), and basins and bowls (23, 33, 35).

Plate 13. Bowl (36), basins (37, 43), straight-sided cups (57, 59–64, 72, 74, 77, 81, 97, 104, 106, 128, 129), straight-sided or conical cup (137), cylindrical cup (158), rounded cup (161), semiglobular cups (163, 165), and carinated cups (168, 176, 180, 184, 197, 211).

Plate 14. Carinated cup with spout (212), lamp (220), carinated kantharos with two handles (223), and hole-mouthed jars (228, 230).

Plate 15. Hole-mouthed jar (231), bridge-spouted jars (237, 239), and jugs (263, 267–272).

Plate 17. Jug (303) and amphorae (307–311).

Plate 18. Amphorae (312, 314), miniature vessel (320), pithoi (328, 336), triple vessel (348), and closed vessels (351, 392, 436).

Plate 19. Cylindrical stand (441), pyxis-like vessel (442), cover (447), tripod offering stands (469 [from above], 473, 475, 476, 483), kalathos (492), kernos (494), four-legged offering stand (495), miniature tripod (496), tripod tray (497), tray (503), and tripod cooking pot (515).

Plate 20. Tripod cooking pots (517, 519, 521–527).

Plate 22. Tripod cooking pots (540, 542, 552). Prism seal 580: seal faces (a–c) and impressions (d–f).

Plate 23. Murex shell fragments found in pithos 328 (a); flax seed (b); discoid loomweights 674–676 (c–e); Linear B tablet X 976 from Knossos (f); Linear B tablet V 832 from Knossos (g).
Acknowledgments

Many people and several institutions deserve thanks for helping to bring this project to completion. Excavation was conducted under the auspices of the 24th Ephorate of Prehistoric and Classical Antiquities (EPCA). The work was directed by Vili Apostolakou, who was then the Director of the Ephorate. The trench supervisor was Konstantinos Chalikias. Financial support for some of the work was provided by the Institute for Aegean Prehistory (INSTAP) and the Tyler School of Art and Architecture of Temple University, Philadelphia.

Work of study was supported by the staff of the INSTAP Study Center for East Crete (INSTAP SCEC) in Pacheia Ammos, and Thomas M. Brogan, Director. Many members of the staff of the Study Center assisted with the preparation of the objects for publication. Eleanor J. Huffman assisted in numerous ways. Stepania Chlouveraki and Matina Tzari were the conservators. Photographs were taken by Chronis Papanikolopoulos. Drawings were made by Doug Faulmann, Konstantinos Chalikias, and Lily Bonga. Registrar was Mary A. Betancourt. Matina Papadaki operated the water separation instrument and sorted the water-sieved samples. The geological work was conducted partly at the Wiener Laboratory of the American School of Classical Studies at Athens (ASCSA) and at the University of Hawaii.

Thomas Palaima extends thanks to Deborah Ruscillo, Marie-Louise Nosch, José L. Melena, Maurizio del Freo, Anne Chapin, Cassandra Donnelly, Paula Perlman, Rabun Taylor, Sara Kimball, Kevin Pluta, Joann Gulizio, and Philip P. Betancourt for their generous help with many aspects of Chapter 15.
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCHEM</td>
<td>Archaeochemistry in the Eastern Mediterranean</td>
</tr>
<tr>
<td>ASCSA</td>
<td>American School of Classical Studies at Athens</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter(s)</td>
</tr>
<tr>
<td>cm/sec</td>
<td>centimeters per second</td>
</tr>
<tr>
<td>CV</td>
<td>column volume</td>
</tr>
<tr>
<td>d.</td>
<td>diameter</td>
</tr>
<tr>
<td>dim.</td>
<td>dimension</td>
</tr>
<tr>
<td>EBA</td>
<td>Early Bronze Age</td>
</tr>
<tr>
<td>EDM</td>
<td>electronic distance measurement</td>
</tr>
<tr>
<td>EFT</td>
<td>elliptic Fourier transform</td>
</tr>
<tr>
<td>EM</td>
<td>Early Minoan</td>
</tr>
<tr>
<td>EPCA</td>
<td>Ephorate of Prehistoric and Classical Antiquities</td>
</tr>
<tr>
<td>est.</td>
<td>estimated</td>
</tr>
<tr>
<td>F. Time</td>
<td>final time (t_f)</td>
</tr>
<tr>
<td>FN</td>
<td>Final Neolithic</td>
</tr>
<tr>
<td>g</td>
<td>gram(s)</td>
</tr>
<tr>
<td>GC-MS</td>
<td>gas chromatography-mass spectrometry</td>
</tr>
<tr>
<td>GPR</td>
<td>ground-penetrating radar</td>
</tr>
<tr>
<td>h.</td>
<td>height</td>
</tr>
<tr>
<td>I. Time</td>
<td>initial time (t_i)</td>
</tr>
<tr>
<td>IGME</td>
<td>Institute for Geology and Mining Exploration</td>
</tr>
<tr>
<td>INSTAP</td>
<td>Institute for Aegean Prehistory</td>
</tr>
<tr>
<td>INSTAP SCEC</td>
<td>Institute for Aegean Prehistory Study Center for East Crete</td>
</tr>
<tr>
<td>km</td>
<td>kilometer(s)</td>
</tr>
<tr>
<td>kPa</td>
<td>kilopascal(s)</td>
</tr>
<tr>
<td>kV</td>
<td>kilovolt(s)</td>
</tr>
<tr>
<td>L.</td>
<td>length</td>
</tr>
<tr>
<td>LM</td>
<td>Late Minoan</td>
</tr>
<tr>
<td>m asl</td>
<td>meters above sea level</td>
</tr>
<tr>
<td>max.</td>
<td>maximum</td>
</tr>
<tr>
<td>MBA</td>
<td>Middle Bronze Age</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>min/sample</td>
<td>minute(s) per sample</td>
</tr>
<tr>
<td>ml</td>
<td>milliliter(s)</td>
</tr>
<tr>
<td>μl</td>
<td>microliter(s)</td>
</tr>
<tr>
<td>MM</td>
<td>Middle Minoan</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter(s)</td>
</tr>
<tr>
<td>μm</td>
<td>micrometers</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MNI</td>
<td>minimum number of individuals</td>
</tr>
<tr>
<td>mybp</td>
<td>million years before present</td>
</tr>
<tr>
<td>m/z</td>
<td>mass-to-charge ratio</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>PAI</td>
<td>Pacheia Ammos Industrial Area</td>
</tr>
<tr>
<td>pres.</td>
<td>Preserved</td>
</tr>
<tr>
<td>PS</td>
<td>Pseira</td>
</tr>
<tr>
<td>rest.</td>
<td>restored</td>
</tr>
<tr>
<td>R. Time</td>
<td>retention time (t<sub>R</sub>)</td>
</tr>
<tr>
<td>sec</td>
<td>second(s)</td>
</tr>
<tr>
<td>th.</td>
<td>thickness</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TIC</td>
<td>total ion current</td>
</tr>
<tr>
<td>UPLC-MS</td>
<td>ultra-performance liquid chromatography-mass spectrometry</td>
</tr>
<tr>
<td>w.</td>
<td>width</td>
</tr>
<tr>
<td>wt.</td>
<td>weight</td>
</tr>
</tbody>
</table>